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Weighted Pointer: Error-aware Gaze-based Interaction through
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Fig. 1. The Weighted Pointer provides stable gaze-based pointing interaction irrespective of gaze signal quality via fallback modalities.
The techniques detect the eye tracking error level and determines the relative weighting to assign between gaze and the fallback
modality. A: The pointer direction (red) is aligned with gaze (orange) when the gaze signal is stable. B: The pointer relies on both gaze
and the fallback modality (e.g., head direction, green) if the gaze signal deteriorates. C: The pointer fully relies on the fallback modality
if gaze is deemed to be unusable for interaction.

Abstract—Gaze-based interaction is a fast and ergonomic type of hands-free interaction that is often used with augmented and virtual
reality when pointing at targets. Such interaction, however, can be cumbersome whenever user, tracking, or environmental factors
cause eye tracking errors. Recent research has suggested that fallback modalities could be leveraged to ensure stable interaction
irrespective of the current level of eye tracking error. This work thus presents Weighted Pointer interaction, a collection of error-aware
pointing techniques that determine whether pointing should be performed by gaze, a fallback modality, or a combination of the two,
depending on the level of eye tracking error that is present. These techniques enable users to accurately point at targets when eye
tracking is accurate and inaccurate. A virtual reality target selection study demonstrated that Weighted Pointer techniques were more
performant and preferred over techniques that required the use of manual modality switching.

Index Terms—Eye tracking, Gaze interaction, Virtual Reality, Adaptive interfaces, Accessibility

1 INTRODUCTION

Eye tracking is becoming an increasingly prevalent input modality
for use within augmented and virtual reality applications (AR/VR)
when pointing at targets due to its speed and because users naturally
look at objects that they are considering for manipulation. Gaze-based
pointing has thus been proposed as an attractive modality for interface
control [13,37,64,67]. Tracking gaze alignment over a target, however,
is not precise or easy. Firstly, the fovea is 1° in diameter, limiting
the accuracy possible with eye trackers [38]. Additionally, as today’s
camera-based eye trackers require a calibration process to map eye
images to gaze directions, whenever there are poor or missing cali-
brations, accuracy errors (i.e., the difference between the actual and
recorded gaze directions) could be significant and shift gaze directions
outside of, or to, a different target than the one intended. Furthermore,
because the eyes are continuously moving, they introduce a natural
level of noise within gaze signals, which can become exacerbated by
tracking difficulties [27]. Such precision errors can impact pointing
whenever jitter occurs and may also impact algorithms that rely on
dispersion or velocity thresholds to detect gaze movements [58] by
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forcing higher threshold values [27,28]. Finally, as eye trackers require
a clear view of the eyes, user and environmental factors (e.g., lighting,
glasses, lazy eyes) can cause significant issues with precision and accu-
racy, and even data loss [27], thus making interaction difficult, if not
impossible [27, 28, 48]. In light of these challenges, the use of a solely
gaze-based pointer within AR or VR can thus be problematic.

To address these limitations, several projects have proposed the
inclusion of a secondary modality to refine inaccurate gaze direc-
tions [37,54,66,69] or disambiguate one target from many in situations
where there is uncertain gaze input [45, 62]. However, these techniques
require users to manually detect and refine errors that are present. Alter-
natively, gaze-based error-aware systems have also proposed adjusting
one’s gaze position to account for accuracy errors [7] or to increase
the size of a target to overcome poor signal quality [19]. Although
these approaches can be useful, they all assume that there will be a
stable output of gaze samples that can be used to (i) accurately adjust
the signal or interface or (ii) be used in combination with a second
modality to refine or disambiguate one’s pointing position. However,
as stable eye tracking output is not guaranteed for all users or contexts,
there is a need for techniques that can provide stable output even in
situations with significant error or data loss. This is especially relevant
for AR where environmental conditions can change significantly.

This research explores the use of fallback modalities to address all
levels of eye tracking error during target selection and to make gaze-
based systems more accessible to users who struggle with eye tracking.
We introduce Weighted Pointer pointing, a set of techniques that de-
termines whether the user should rely on gaze, the fallback modality,
or a combination of both while pointing based on the current level of
gaze signal error. Using these techniques, a user’s pointer position will
be fully dictated by gaze if the gaze signal is deemed accurate and
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stable enough or, as the gaze signal deteriorates, it will increasingly
rely on the fallback modality until the pointer position is completely
dictated by the fallback modality. To support such an interaction, the
Weighted Pointer techniques consist of three separate and replaceable
components that (1) detect the current level of eye tracking error, (2)
calculate the weightings between gaze and the fallback modality, and
(3) leverage the weightings and output signals to enable pointing at any
level of eye tracking error (Figure 1). Multiple Weighted Pointers that
utilized varying fallback modalities were implemented and evaluated
within a VR target selection study that manipulated the levels of eye
tracking error and compared the new techniques to existing manual
techniques, e.g., Eye+Device and Eye+Head Pinpointing [37].

This research thus contributes (1) error-aware gaze-based pointing
techniques that support stable pointing interaction irrespective of gaze
tracking quality through the adaption of fallback modalities for wear-
able AR and VR, and (2) the results from a user study that evaluated
these techniques compared to manual refinement techniques. The
study demonstrated that participants performed at equal or significantly
higher performance compared to the manual techniques and that our
techniques were preferred by the majority of participants. The results
highlight the benefits of automating switching between modalities to
increase user performance and experiences while working with multi-
modal interfaces.

2 RELATED WORK

Gaze has been studied since the eighties for hands-free interac-
tion [29,30,75]. For the design of the Weighted Pointer we are building
on insights on handling eye tracking error, as well as prior work on
multimodal interaction with gaze.

2.1 Handling Eye Tracking Error
Measuring and handling gaze signal error is an important aspect of
eye tracking and gaze-based interaction. Within this context, accuracy
refers to the average difference between the true and measured gaze
direction. Precision, on the other hand, is defined as how consistent
measured gaze directions are while the true gaze direction is constant
and is usually measured via the root mean square (RMS) of the in-
tersample differences [27]. Finally, data loss, i.e., when a tracker is
unable to output a gaze direction, can be caused by a poorly aligned
tracker, user factors such as eye-shape, glasses, and makeup, or by
the user closing their eyes. Data loss is also commonly accompanied
by tracking artifacts that cause significant spikes in a gaze signal [27].
All three of these factors can have a significantly negative impact on
gaze-based interaction and may vary across tracking areas [19] or over
time due to changing lighting conditions, pupil size, or slippage of a
head-mounted display (HMD) in AR/VR settings [16, 27, 47].

Much research has proposed various gaze-based techniques to ad-
dress the impact of eye tracking error on interaction. Poor accuracy can
be addressed by calibration processes, where points across a tracking
area are mapped to eye images through explicit [18, 20, 21, 27, 55]
or implicit [18, 65] procedures. Poor precision can be addressed via
filtering [10, 19, 71]. Gaze-based systems have also used algorithms
to map gaze positions and sequences to objects when input is uncer-
tain [9, 41, 52, 70, 72]. There have also been numerous gaze-based
interaction techniques that have been proposed to improve interaction
by increasing target or cursor sizes via zooming [12,39], the use of area
cursors [12], cursors that can be nudged via gaze-based buttons [56],
or by the incremental disambiguation of possible targets [42]. How-
ever, these strategies do not guarantee the removal of tracker errors
as demonstrated by prior work where participant data was discarded
due to calibration and tracking issues [1, 4, 15, 19, 45, 48, 50, 53, 59].
Thus, this research proposes the use of fallback modalities to make
gaze-based systems more robust and accessible to users.

2.2 Refinement and Disambiguation
The most common metaphor for selection in 3D environments is
Raycasting where the user controls a ray via a controller or body
part [26, 51]. However, Raycasting can be challenging for small targets
due to occlusion or pointing inaccuracy caused by tracking issues or

user limitations (e.g. shaking hands). As such, researchers have devel-
oped a variety of target disambiguation techniques that requires addi-
tional manual steps for final selection [5,23,35,77] or that apply contex-
tual information or heuristics for implicit disambiguation [23,24,60,68].
However, while these techniques help users perform difficult selections,
many assume a stable signal to disambiguate target candidates.

For gaze interaction, research has investigated the refinement of
inaccurate gaze cursors through the use of a second, more accurate,
modality such as head movements [36,73], touch interaction [54,69] or
hand movements [18, 79, 80]. Furthermore, researchers have proposed
techniques that disambiguate one target out of many candidates via
head [74] or hand gestures [11]. In AR and VR, gaze refinement has
been investigated via head or controller movements [31, 37], or by
gestural head movements that are detected from eye-head coordination
insights [66]. These techniques, however, require the user to manually
detect and switch modalities, thus increasing their task load, or utilize
automatic switching via velocity-based thresholds, which may be prone
to errors caused by poor precision or data loss. Researchers have also
proposed VR disambiguation techniques where object decluttering [14]
or relative eye movements that do not rely on calibration [45, 62] are
used when the gazed-upon target is uncertain. However, these tech-
niques require changes to one’s environment or rely on low precision
and data loss errors to accurately detect relative eye movements. The
present research proposes interaction techniques that automate the de-
cision to use a fallback modality to lower user workload, while also
not relying on metrics which are sensitive to tracking errors or require
changes to one’s environment.

2.3 Error-aware Interaction
Interaction issues caused by poor signal quality have led to the devel-
opment of error-aware interactive systems that account for ambiguous
input caused by sensor limitations or tracking difficulties. In touch-
based interaction, probabilistic approaches have been used to tackle
uncertain input caused by the fat finger problem or gesture-recognition
difficulties [43, 44, 61]. Furthermore, VR and AR researchers have
leveraged the multiple available modalities (e.g. speech, hand gestures,
head direction) by combining them to more robustly infer the most
probable action performed by the user [32, 40, 49].

Error-aware gaze-based systems store the current eye tracking cali-
bration data that contains measurements of all gaze signal errors. These
records are then used to adjust interaction by, for example, correcting
the gaze direction [6, 7, 18] or by enlarging user interface widgets that
are positioned at areas where the eye tracking signal is poor [19]. Alter-
natively, erroneous interactions are detected through brain-computer
interfaces and remedied [33]. These approaches assume a certain level
of accuracy within the eye tracking signal from which one’s gaze direc-
tion can be corrected or the widget can be selected. To our knowledge,
there are no error-aware systems that can ensure stable interaction
irrespective of gaze signal quality, even when the signal quality has
completely deteriorated. Thus, this research investigates error-aware
interaction with a focus on how fallback modalities can be deployed
in conjunction with gaze or as a replacement for gaze when the gaze
signal is too poor for standalone use.

3 WEIGHTED POINTER

The Weighted Pointers are a set of generic ray-casting techniques
designed for pointing-based interaction while using HMDs within AR
and VR. The core concept of Weighted Pointer is to determine whether
interaction should rely on gaze, a fallback modality, or a combination of
the two depending on the gaze-signal quality. Four variations that relied
on different fallback modalities were implemented, i.e., head, controller,
relative controller movements, and a combination of relative controller
and head movements. We used head and controller techniques as
fallbacks since they are commonly available in modern VR/AR kits.
Furthermore, both modalities constantly coordinate with the eyes during
movement which should make hand or head pointing in conjunction
with gaze feel natural to users [63, 65]. The design of the Weighted
Pointer techniques was based on four goals. First, the techniques
should provide stable interaction irrespective of the eye tracking error
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Fig. 2. Equation 1 used for modality weighting visualized. The green line
represents Eacc = 2° and the red line represents Emax = 8°. The function
will weigh more heavily towards gaze if the error is below Eacc, otherwise
it will weigh more towards the fallback modality as the error increases.

level, including when the eye tracker is unusable. Second, the switch
between modalities is automatic rather than manual as is common in
prior techniques. Thirdly, determining whether a gaze signal is too
inaccurate or noisy for interaction should depend on current interaction
needs (e.g. target sizes). As such, the techniques should accommodate
an application’s required level of interaction granularity. Finally, as the
movements performed by the user may be different when using gaze or
the fallback modality, the user should be able to understand whether
they are currently relying on gaze or the fallback modality to interact.
Next, we describe the general role of each component that is needed to
help Weighted Pointer achieve these goals.

3.1 Error Detection Model
The first component of Weighted Pointer calculates and stores the
current accuracy, precision and data loss error of the gaze signal. The
stored metrics are then retrieved during runtime to compute a weighting
between the gaze and the fallback modality. The Error Detection
Model is based on an eye tracking calibration used in prior error-aware
research [7,18,19]. Previous work that adjusted gaze positions required
knowledge about the errors’ direction for accurate adjustments [7,
18], however, our reliance on fallback modalities lowers the required
granularity as we only need to know whether gaze errors are present
and their magnitude. This simplifies the required calculations. Within
our implementation, the HMD’s screen area is divided into an n×m
grid (i.e., one cell per calibration point) to account for changes in
different parts of the tracking area. Accuracy and precision measures
from the latest calibration are then stored within each cell and updated
each time the user performs the calibration procedure. Accuracy is
measured as the average angular difference between the recorded gaze
position and the calibration point position. Precision is calculated as
the RMS between eye tracking samples while the user is fixating on the
calibration point. During application use, the stored error information is
retrieved from the cell closest to the current gaze direction. To measure
data loss, the ratio of missing data versus all data points is continuously
calculated using a rolling window of Nl frames. Accompanying artifacts
are removed and treated as missing data. A filter removes data points
with an angular gaze velocity higher than vmax, which is higher than
what is physically possible [27].

3.2 Weighting Model
The Weighting Model retrieves the information stored by the Error
Detection Model to decide whether the interaction should rely on gaze
or the fallback modality. In the implementation, the Weighting Model
is a logistic sigmoid function S(error) that outputs a value between
0−1 that decides the relative weighting between the gaze and fallback
modality (Equation 1). The gaze weighting, WG, is then defined as
WG = 1−S(error) and the fallback modality weighting, WF , is defined
as WF = S(error). As input for Equation 1 (error), the system retrieves
the sum of the accuracy and precision data from the Error Detection
Model’s grid cell that is closest to the latest valid gaze point during each

Fig. 3. The Weighted Pointer variations all use gaze (orange) as the
main modality. (a) Hands-free uses the head direction as the fallback
modality (green). (b) In Controller-based, the fallback direction is based
on the controller direction (blue), originating from the head position. (c)
In Relative, a rotational offset R is calculated from the controller direction
(blue) and a calibrated neutral direction (grey), and is then applied to the
gaze direction. (d) In Trimodal, the same offset is used as in (c), but is
applied to the head direction (red).

frame. As the accuracy and precision necessary for stable interaction
can vary by task, context, and environment, the weighting function is
defined by two adjustable parameters. Eacc defines the maximum eye
tracking error that will not affect interaction. The interaction should
rely solely on gaze for any error at or below this level. Emax defines the
upper limit at which point the eye tracker is deemed to be usable. The
interaction should fully rely on the fallback modality when the error
exceeds this limit. G defines the gradient of the curve between Eacc and
Emax. For example, S = 8 means that 97.5% of the possible values are
between Eacc and Emax. The sigmoid curve is then adjusted so that the
interaction relies on a combination of gaze and fallback modality for
any error value between these parameters, with it relying more on the
fallback modality as the error reaches Emax (Figure 2). A combination
of gaze and fallback is used for these moderate levels of error so that
users can rely on gaze as much as possible, even though gaze alone
may be too inaccurate for interaction. This allows gaze to be useful
in situations with error present as gaze will point in the approximate
target direction. The user can then make small corrections to minimize
fallback movement [66, 73], or lazily point with the fallback without
requiring a high level of pointing accuracy [78]. Finally, data loss is
accounted for by normalizing WG and WF based on the ratio of valid
gaze samples from the last Nw frames.

S(error) =
1

1+ eFactor(error)

Factor(error) =
G

(Emax −Eacc) · (error+ Eacc+Emax
2 )

(1)

3.3 Pointing Techniques

P =
1

Np

(
WG

Np

∑
i=1

PG(i)+WF

Np

∑
i=1

PF(i)

)
(2)

The final component of Weighted Pointer, the Pointing Techniques,
retrieves the latest weightings from the Weighting Model to calculate
and present pointing output to the user. The latest gaze and fallback
directions are added to separate rolling windows (i.e., PG and PF respec-
tively) of size Np. The rolling windows add a level of smoothing for
situations with high precision error and to minimize the impact of short
periods of data loss. The pointing direction (i.e., P) is then calculated as
the sum of the means from each rolling window adjusted by the latest
weightings (Equation 2). As such, the pointer direction is aligned with
gaze when the gaze signal is stable and will rely more on the fallback as
the signal deteriorates. The continuous spectrum between gaze and the
fallback modality allows users to rely on gaze in situations where the
signal would be unusable in a gaze-only system, while also allowing
lazy pointing with the fallback modality in cases where both gaze and
fallback are used for interaction. As the choice of fallback modality
can have a significant impact on the technique’s behaviour and one’s
user experience, we developed four technique variations (Figure 3).
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Hands-free Weighted Pointer uses head pointing as the fallback
modality (Figure 3a) to allow for fully hands-free interaction. As
the head is used as a natural part of our gaze movements [64], the
transition from gaze- to head-pointing should be simple for users
to understand as the pointer is guaranteed to always be within
the field of view, and the head has been shown to be accurate for
pointing [37, 57].

Controller-based Weighted Pointer uses controller pointing as the
fallback modality (Figure 3b). With this technique, the pointing
origin is set to the gaze origin (head pose) to avoid confusion dur-
ing modality transitions. Therefore, the technique only requires a
3 degree of freedom controller, making it somewhat reminiscent
of the RCE technique [2]. We assume that stable tracking of the
gaze origin can be achieved via head tracking.

Relative Weighted Pointer applies controller rotations that are rela-
tive to a neutral controller direction to the gaze direction as the
fallback modality (Figure 3c). This is achieved by applying the
rotational difference R between the current hand pose and a de-
fined neutral hand pose to the gaze direction. The technique is
designed to minimize controller movements to avoid arm fatigue
caused by hand pointing [25]. With this technique, the user can
perform small adjustments by rotating the controller as they hold
it in a ”lazy” resting position by their side.

Trimodal Weighted Pointer uses relative controller movements sim-
ilar to the Relative Weighted Pointer technique however with
this technique, the rotational difference R is applied to the head
direction as the fallback modality (Figure 3d). This allows for
a combination of head and controller movements to be used to
adjust the pointer direction. Large adjustments can be performed
with less straining head and hand movements because the refine-
ment is distributed to both modalities. Also, in contrast to the
Relative Weighted Pointer technique, the fallback modality is not
based on the gaze direction and should thus be more stable during
high levels of precision and data loss.

Previous refinement techniques have used different approaches to vi-
sualize the current mode of interaction to the user, such as cursor colour
changes [66] or by changing cursor appearance during refinement [37].
Weighted Pointer uses cursor transparency, where the cursor’s alpha
value is set to WF . Through this design, the continuous spectrum be-
tween gaze and fallback can be displayed without relying on a cursor
when interaction is purely gaze-based, which has been shown to be
distracting for users [8]. Pointing feedback can then be displayed on
the target (e.g., highlighting). Changes in cursor transparency and
weightings can then be transitioned over ttransition seconds via linear in-
terpolation to avoid any abrupt changes caused by updated weightings.

4 EVALUATION

A VR user study was conducted to gather insights into the proposed
techniques’ performance and to gather user feedback at different levels
of eye tracking error, and investigate the effectiveness of using error-
based modality switching compared to manual modality switching.
Therefore, the Eye+Head and Eye+Device Pinpointing techniques
were selected as baselines, wherein the switching from gaze pointing to
refinement was performed via a button press and hold [37]. We selected
the baselines due to their ability to handle both accuracy and precision
error, and since the modality switch is performed manually in contrast
to our techniques where the switch is performed by the system.

4.1 Participants
Twenty-four participants participated in the study (35±7 age; 15 male,
9 female) and were compensated for their participation. Informed
consent was obtained and protocols were approved by the Western In-
stitutional Review Board. Eighteen participants reported occasional VR
experience, 5 participants reported weekly experience and 1 participant
reported daily VR experience. Six participants reported no eye tracking
experience, 15 reported occasional, and 3 reported weekly experience.

Fig. 4. Study Environment. A: Possible target positions. B: First person
view of the study environment. The participant is aligning themselves
against the central position. C: An arrow replacing the central position
target points toward the next target to select.

4.2 Task and Procedure
Our study task was inspired by similar previous work [37, 66]. During
the experiment, participants were asked to select spherical targets with
a diameter of 3° in visual degrees, from a 6-meter distance, at varying
directions, amplitudes, and levels of accuracy and precision error. To
begin a trial, participants aligned their gaze and head within 2° to a
cross-shaped central target. After 1 second, a spherical target appeared
in a predefined direction and amplitude, and an arrow directing partici-
pants towards the target replaced the central target. Targets were placed
in one of eight compass directions to minimize bias by eye tracking
error direction, and at two target amplitudes to cover target selection
within and outside the initial field of view. Participants were instructed
to select the target as quickly and accurately as possible. After selection,
they would then return to the central starting position to start the next
trial. Participants could not move on to the next trial until the object
had been correctly selected or until a 10-second timeout had passed.

To investigate the effect of eye tracking precision and accuracy er-
ror, these error types were artificially injected into the eye tracker’s
gaze estimation. Accuracy was induced by adding a constant offset
to the gaze direction in a random constant direction. Precision error
was induced by adding Gaussian noise with a standard deviation that
approximately resulted in an intersample RMS of a chosen value. The
error conditions represented varying possible combinations, i.e., no sig-
nificant error, significant accuracy error, significant precision error, and
combined significant accuracy and precision error. Error magnitudes
were set so that targets would be difficult to select without aid from
the fallback modality (i.e., 5° for both injected accuracy and precision
error). The study employed a within-subjects design, with the following
independent variables and levels:

• Pointing Technique: Weighted Pointers: Hands-free,
Controller-based, Relative and Trimodal. Pinpointers:
Eye+Head and Eye+Device.

• Eye Tracking Error: No Error, Accuracy error, Precision error,
Both Accuracy and Precision error

• Target Direction: 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°

• Target Amplitude: 30°, 60°

At the beginning of the study, participants first signed a consent
form and answered a demographic questionnaire. They then donned
the head-mounted display in a standing position and performed blocks
of selections where each block consisted of all trials for one pointing
technique. Technique order was counterbalanced using a balanced Latin
square. At the start of each block, participants calibrated the eye tracker
via the standard Vive Pro Eye 5-point calibration process. Participants
then performed a second calibration procedure using the GazeMetrics
toolkit [3] to record eye-tracking data for the Error Detection Model.
Participants were instructed to fixate on 9 calibration points, one for
each grid cell in the detection model. To ensure equal conditions for all
participants, the average sum of the recorded precision and accuracy
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Fig. 5. Mean selection time for each technique by error condition. The error bars represent the 95% confidence intervals of the means.

errors during this process was not allowed to exceed 2°. If the error
exceeded this limit, participants had to redo the process until they
reached an error level below this threshold. Participants were then
instructed to practice with the technique for a minimum of 15 trials
before starting the experiment.

Within each technique block, trials were split into sub-blocks where
participants performed all selections with a specific eye tracking error
level before moving onto the next eye tracking error level. The eye
tracking error level order within each technique was systematically
altered to ensure even error ordering across participants. After complet-
ing a block with a technique, participants removed the head-mounted
display and filled out a RAW NASA-TLX questionnaire to record the
workload they experienced, and also completed a questionnaire, based
on previous work [66], consisting of five 5-point Likert items about
usability factors to gather user feedback. Please refer to the supplemen-
tary material for the questions in full. After the final block, participants
were asked to rank the techniques and were asked open-ended questions
to extract technique preferences and opinions. For each technique, each
participant completed 4 sub-blocks (i.e., one per error condition) of 32
trials (i.e., 8 directions x 2 amplitudes x 2 repetitions). As such, each
participant performed 6 techniques, 4 error conditions, 8 directions,
2 amplitudes, and 2 repetitions, resulting in a total of 768 trials. The
study took 90 minutes to complete. In total, we collected 18,432 trials.

4.3 Apparatus
The techniques and study environment were developed in Unity version
2020.3.11f1. An HTC Vive Pro Eye head-mounted display with a reso-
lution of 2880 x 1600 was used to record eye and head input at 90 Hz,
while a single HTC Vive handheld controller was used for controller
input at 90 Hz. For all of the Weighted Pointer techniques, a selection
was made using a trigger press. Pilot testing was used to decide upon
a common set of parameters for all Weighted Pointers (i.e., n,m = 3,
Nl ,Nw,Np = 20 f rames, vmax = 1000◦/s, ttransition = 0.2s, Eacc = 2◦,
Emax = 8◦. Eacc and Emax were set so that the experiment would cover
different levels of gaze and fallback modality weightings). A fixed com-
mon neutral controller direction that pointed downward and forward
was used for all participants when they used the Relative and Trimodal
techniques so that the controller could hang comfortably next to their
body (Figure 3c). The Pinpointing techniques were implemented as
described by Kytö et al., wherein the cursor was only visible during the
refinement mode, the switch to the refinement mode was performed via
a trigger press, and a selection was made on the trigger release [37].

5 RESULTS

The dependent variables of interest were selection time, error rate,
head and controller movements, and perceived workload and usability.
Unless otherwise stated, the analysis was performed with a four-way
repeated measures ANOVA (α=.05) with Technique, Error, Direction
and Amplitude as independent variables. When the assumption of
Specificity was violated, as tested with Mauchly’s test, Greenhouse-
Geisser corrected values were used in the analysis. QQ-plots were used
to validate the assumption of normality. Bonferroni-corrected post-hoc

tests were used when applicable. Effect sizes are reported as partial eta
squared (η2

p). RAW NASA-TLX scores and the Likert-scale usability
data were analyzed using Friedman tests and Bonferroni-corrected
Wilcoxon signed-rank tests were used for the post-hoc analysis.

Both temporal and spatial filtering was used to remove outlier trials.
For temporal filtering, trials with selection times that were more than 3
standard deviations from the grand mean were discarded. For spatial
filtering, trials with a selection endpoint projected onto the task axis
(i.e., the vector between the central and selection targets) that were
more than 3 standard deviations from the grand mean were discarded.
In total, 618 trials were discarded (3.3%). After outlier filtering, 100
of the 9216 cells had missing values for the 4-way repeated measures
ANOVA. These values were replaced with the maximum value over all
participants for each respective dependent variable.

5.1 Selection Time

To understand how participants accounted for eye tracking errors and
the effect different types of eye tracking errors had on user performance,
selection time was computed (Figure 5). Selection time was defined as
the time between the start of a trial to a successful selection, irrespective
of prior incorrect selections.

The results did not find a 4-way interaction, but a significant
3-way interaction was found for Technique × Error × Amplitude
(F8.56,196.94=2.55, p=.010, η2

p=.100). Further inspection found that
there were significant simple interactions for Technique × Error at the
30° (F5.70,131.09=2.88, p=.013, η2

p=.111) and 60° (F6.47,148.76=6.36,
p<.001, η2

p=.217) target amplitudes. Pairwise comparisons showed
that all Weighted Pointers were faster than the Pinpointers in the No
Error condition, as participants could quickly point and select targets
using their gaze rather than needing to use the button release to select
a target (all p<.028). Also, the Hands-free technique was found to
be significantly faster than the Relative, Eye+Head, and Eye+Device
techniques for all other Error conditions at both amplitudes (all p≤.01),
while the Controller-based technique was faster than the Eye+Device
and Relative techniques (all p≤.019).

However, the Relative technique struggled with added precision and
was significantly slower than all other Weighted Pointer techniques in
the Precision and Both conditions (all p≤.009). Post-hoc tests also
found that for the Hands-free techniques, the Precision and Accuracy
conditions were faster than the Both condition at the 30° target am-
plitude (both p≤.028). This is presumably because participants could
partially rely on gaze movements in conjunction with the head, leading
to an increase in selection speed, whereas participants had to rely solely
on the slower head movements in the Both condition.

For the Trimodal technique, however, the Precision condition was
faster than the Accuracy and Both conditions at the 30° target ampli-
tude (p≤.025). This may be because participants had to perform fewer
corrective movements and could move their head directly towards the
target, similar to their natural head movements, indicating that accuracy
errors may have a larger negative effect on selection time. To summa-
rize, the results showed that the Weighted Pointers were significantly
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Fig. 6. The error rate for each technique. The error bars represent 95%
confidence intervals of the means. Statistical significance is marked with
stars (∗=p<.01).

faster than the Pinpointers. Furthermore, the results demonstrated that
users were fastest with the head as a fallback modality for gaze. Fi-
nally, the results partially justified the use of a continuous transition to
the fallback modality as participants were faster with the Hands-free
technique when using gaze in conjunction with a fallback modality
compared to when they only used their head.

The results also found significant Technique × Amplitude simple
interactions for the Accuracy (F3.56,82.78=5.69, p=.001, η2

p=.198), Pre-
cision (F3.81,87.64=4.98, p=.001, η2

p=.178) and Both (F3.88,89.14=8.62,
p<.001, η2

p=.278) conditions, but not the No condition (F5,115=0.29,
p=.919, η2

p=.012). The results suggest that the Relative and Trimodal
techniques were affected by longer target amplitudes presumably be-
cause the fixed neutral direction led participants to compensate for the
natural rotation that occurred as their bodies rotated towards targets,
which affected the cursor position. This effect was less pronounced for
the Trimodal technique, as participants could compensate using head
movements. Furthermore, this effect was not found in the No Error
condition, as participants relied only on gaze.

Finally, we found significant main effects for Tech-
nique (F2.97,68.39=13.23, p<.001, η2

p=.365), Error Condition
(F1.96,45.02=58.11, p<.001, η2

p=.716), Amplitude (F1,23=500.33,
p<.001, η2

p=.956), and Direction (F4.61,105.94=3.08, p=.015,
η2

p=.118). The Hands-free (1.77s) and Controller-based (1.87s)
techniques proved to be overall significantly faster (all p≤.021)
than Relative (2.27s), Eye+Device (2.30s), and Eye+Head (2.28s).
Furthermore, Trimodal (1.97) proved significantly faster than Relative
and Eye+Device (all p≤.033). Furthermore, participants were
significantly faster in the No condition than in other conditions as users
could rely on accurate gaze (all p<.001). Participants were also faster
in Accuracy and Precision conditions compared to the Both condition
(allp≤.007). Finally, post-hoc tests showed that larger amplitudes led
to longer selection times (p<.001), but no significance could be found
between directions.

5.2 Error Rate
The error rate, i.e., the number of trials resulting in an error divided
by the total number of trials, was computed to understand the accu-
racy of the techniques. An error was counted whenever a participant
missed the target prior to a correct selection or if a participant failed to
select the target before the 10-second trial timeout. As the error rate
was positively skewed and violated the repeated measures ANOVA’s
assumption of normality, the number of errors was used as count data
and an “underdispersed” Poisson regression model was fit to the data.
We included all interactions involving Technique and all main effects
in the regression. The analysis found that the overall model was signifi-
cant (χ2(95,N=9216)=608.65, p<.001). An investigation of the model
effects revealed a significant main effect for Technique (χ2(5)=13.81,

p=.019). Sequential Šidák pairwise comparisons (Figure 6) showed
that participants were more accurate with techniques that used the head
as the fallback modality. The Hands-free and Eye+Head techniques
had significantly lower error rates than all of the other techniques.
Meanwhile, the Relative technique had a significantly higher error rate
than all of the other techniques. No significant differences were found
between the Controller-based, Trimodal, and Eye+Device techniques.

5.3 Head and Controller Movement
The Relative technique was designed to minimize controller move-
ment through relative moments, while the Trimodal technique was
designed to minimize head and controller movement by distributing
the interaction across both modalities. To verify these assumptions, we
investigated the amount of head and controller movement participants
exhibited for each technique. For each movement, we were mainly
interested in the techniques that used the corresponding modality as
the fallback modality, i.e. Hands-free, Trimodal and Eye+Head for the
head, and Controller-based, Relative, Trimodal and Eye+Device for
the controller. To quantify this, we computed the amount of head or
controller rotation performed by the user until a successful selection
was made.

5.3.1 Head Movement
The analysis found no 4-way or 3-way interactions, however, significant
Technique × Error (F6.33,145.73=6.77, p<.001, η2

p=.227) and Tech-
nique × Direction (F10.90,250.67=3.84, p<.001, η2

p=.143) interactions
were found for the amount of head movement made by participants.
Further investigations of the Technique × Error interaction did not find
any significant differences between any of the techniques during the No
error condition, likely because no extra head movements were needed
for selection (Figure 7a). For the other error conditions, the techniques
that used the head as a fallback modality had more head movements
than the techniques relying on the controller (p≤.041). However, no
significant differences were found between the Hands-free, Trimodal
and Eye+Head techniques (i.e., all p≤.140), implying that users mainly
relied on the head as their fallback modality when using the Trimodal
technique. However, there was a larger variance between users with the
Trimodal technique (Figure 7), indicating that users deployed different
amounts of head movements. When further investigating the Technique
× Direction interaction, we found that participants tended to perform
less head movement in the vertical directions, as has been shown in
previous eye-head coordination work in VR [63].

We found significant main effects for Technique (F3.16,72.76=20.83,
p<.001, η2

p=.475), Error Condition (F3,69=26.64, p<.001, η2
p=.537),

Amplitude (F1,23=5618.07, p<.001, η2
p=.996), and Direction

(F3.47,79.85=20.90, p<.001, η2
p=.476). Participants performed signifi-

cantly more head movement with the Hands-free (48.42◦), Trimodal
(44.55◦), and Eye+Head (49.27◦) techniques that used head move-
ment for cursor control compared to the Controller-based (38.12◦),
Eye+Device (40.94◦) and Relative (38.27◦) techniques (all p≤.010).
Post-hoc tests showed that users performed significantly less head move-
ment in the No condition where users relied mainly on gaze compared
to all other error conditions (all p<.001). Finally, post-hoc tests again
showed that larger amplitudes led to more head movement (p<.001),
and that participants performed less head movement in vertical direc-
tions compared to other directions (all p≤.020).

5.3.2 Controller Movement
The analysis did not find any 4-way or 3-way interactions, how-
ever, significant 2-way interactions were found for Technique × Er-
ror (F5.89,135.50=8.33, p<.001, η2

p=.266), Technique × Amplitude
(F3.56,81.87=28.48, p<.001, η2

p=.553), and Technique × Direction
(F7.83,180.13=2.66, p=.009, η2

p=.104). For Technique × Error, post-
hoc tests demonstrated that the Controller-based and Eye+Device tech-
niques had significantly more controller movement than all other tech-
niques during the Accuracy, Precision, and Both conditions (all p≤.049;
Figure 7b), showing that the Trimodal and Relative techniques required
less controller movement for selection. No significant differences
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Fig. 7. Mean (a) head and (b) controller rotation for each technique by error condition. The error bars represent the 95% confidence intervals of the
means.

Fig. 8. The mean responses for the Raw NASA TLX questionnaire. The
error bars represent the 95% confidence intervals of the means.

were found between techniques in the No condition, likely because
the users relied on gaze. Also, all techniques that used the controller
for pointing had significantly lower controller movement in the No
condition compared to the other Error conditions, possibly because par-
ticipants relied on gaze (all p≤.035). For Technique × Amplitude, the
Controller-based and Controller+Device techniques had significantly
more controller movement than the other techniques at both amplitudes
(all p≤.026), again implying that less controller movement was used
for Trimodal and Relative.

Finally, we again found significant main effects for Tech-
nique (F2.70,62.03=25.83, p<.001, η2

p=.529), Error Condition
(F1.97,45.25=40.19, p<.001, η2

p=.636), Amplitude (F1,23=239.18,
p<.001, η2

p=.912), and Direction (F3.93,90.47=6.80, p<.001, η2
p=.228).

Controller-based (57.87◦) and Eye+Device (47.39◦) showed signifi-
cantly more controller movement than all other techniques (all p≤.007).
Interestingly, no significance was found between the Relative (26.78◦)
and Trimodal (21.38◦) techniques that utilized relative controller rota-
tions, and the Head-based (13.20◦) and Eye+Head (23.21◦) techniques
which did not use controller movements for interaction. The No condi-
tion again showed less movement than other error conditions (p≤.001),
and participants performed more controller movement at larger am-
plitudes (p≤.001). Finally, post-hoc tests showed no significance in
controller movement between directions.

Fig. 9. The median responses for the usability questionnaire. The error
bars represent the 95% confidence intervals of the medians.

5.4 Workload and Usability
Friedman tests using the Raw NASA TLX workload metrics (Figure
8) revealed significant differences for Mental Demand (χ2(5)=20.48,
p<.001), Performance (χ2(5)=21.65, p=.001), and Frustration
(χ2(5)=13.15, p=.022). Post-hoc tests revealed that the Hands-free
technique had significantly lower Mental Demand (p=.002) and Frus-
tration (p=.002), and was perceived to have significantly higher Perfor-
mance (p=.041) than the Relative technique.

Friedman tests on the usability ratings (Figure 9) found signifi-
cant differences for perceived Precision (χ2(5)=33.89, p<.001), Ease
(χ2(5)=36.05, p<.001), Learnability (χ2(5)=15.26, p=.009), and Con-
centration (χ2(5)=20.17, p=.001). Post-hoc tests showed that par-
ticipants felt significantly less precise when using the Relative tech-
nique compared to the Controller-based, Hands-free, and Eye+Head
techniques (all p≤.003). For Ease, post-hoc tests showed that it was
harder to perform selections when using the Relative technique than
the Controller-based, Hands-free, Trimodal, and Eye+Head techniques
(all p≤.002). For Learnability, post-hoc tests showed that it was more
difficult to learn how to use the Relative technique than the Hands-free
technique (p=.039). Finally, the Relative technique required signifi-
cantly higher Concentration than the Hands-free technique (p=.003).

5.5 User Preferences
The user preference results showed a trend toward the Weighted Point-
ers techniques (i.e, 10 participants preferred Hands-free, 5 participants
preferred Controller-based, 4 participants preferred Trimodal, 2 partici-
pants preferred Eye+Head, 2 participants preferred Eye+Device, and
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one participant stated no preference). The Hands-free technique was
the most preferred technique due to its “ease of use” (P10) and “sim-
plicity” (P6), and participants stated that they “had more control with
the head” (P14). However, participants also thought that the technique
was “straining” (P6, P11) on the neck. The Controller-based technique
was the second most preferred technique because participants liked the
technique’s “speed” (P5) and “control” (P23), but also thought it was
more “demanding” (P4) to point with the controller.

For the Trimodal technique, participants liked that it required “less
work” (P6), “you could move the cursor with either your head or
controller” (P22), and they could “use the controller to make small
edits” (P19). However, participants criticized its “sensitivity” (P4)
because moving both the head and controller could cause large cursor
movements. Participants also questioned “why the controller needs to
be in the neutral position” (P21). Participants thought the Eye+Device
technique placed a small amount of “strain on the neck and arm” (P11)
and it was “easy to select targets” (P6), however, participants also
thought that it “requires a bit more concentration” (P13) and that they

“have to intentionally look at the target before pressing the trigger” (P6).
Participants thought that the Eye+Head technique was “easy to use”
(P10) and “intuitive” (P6). Participants again stated that they felt more
accurate using their head, i.e., “as someone with unsteady hands, I was
more precise with this technique being isolated to just head movements”
(P11). Finally for the Relative technique, while participants liked that
they “did not have to move the hands as much” (P6) and that they could

“adjust when gaze could not get right on the target” (P14), participants
struggled during high precision errors, stating that the pointer was

“shaky” (P6), and “jittery” (P21).
Participants also commented on whether or not they felt that the

Weighted Pointers’ transparency-based cursor clearly communicated
the current mode of interaction. Participants “liked” (P15) and thought
it was “intuitive” (P10) to use target highlighting for gaze interaction,
however, participants also struggled with the visualization, e.g., “it was
hard to figure out at first when I needed to use my gaze or the controller
to point at the objects” (P10). Furthermore, some participants did
not understand why the modality or visualization changed, e.g., “it
felt like when the cursor showed, the controller was the appropriate
option for aiming at the target, and when the cursor did not show, the
headset was better at tracking my eye movements” (P19). Furthermore,
no participant mentioned the change in transparency, indicating that
participants did not notice that level of granularity in the visualization.

6 DISCUSSION

6.1 Study Results
The study results validated the Weighted Pointer’s principal approach of
adapting pointing modalities to eye tracking error levels. All Weighted
Pointer techniques were found to be faster than the manual Pinpointers
techniques in the No error condition, highlighting the performance
gains that can be obtained when only using a fallback modality as
needed. In addition, most Weighted Pointer techniques showed better
or equal performance to the Eye+Device and Eye+Head techniques in
all other Error conditions. The Hands-free technique was found to be
significantly faster than Eye+Device and Eye+Head in all conditions,
and had a significantly less error rate than the Eye+Device technique.
Furthermore, the Controller-based technique was significantly faster
than the Eye+Device technique. Finally, the majority of participants
preferred a Weighted Pointer technique as their favourite.

One of the main benefits of the Weighted Pointer techniques comes
from their use of gaze when gaze data is accurate and precise enough for
interaction, thereby allowing users to make faster selections without any
extra steps. However, just as with other work [66], the results suggested
that participants were less accurate with gaze compared to the fallback
modality, as they made errors as a result of premature selections whilst
under- or overshooting targets. Combining the Weighted Pointers with
target acquisition techniques such as the Bubble cursor [22] could
improve this. Furthermore, the techniques do not require explicit input
to switch to a fallback modality, resulting in seamless transitions and
users needing to perform fewer interaction steps. In addition, although
the Weighted Pointers required that participants used a button click to

confirm their selections in our study, the automatic switching between
modalities would allow them to be combined with other confirmation
techniques such as dwelling to support hands-free interaction.

The study results also implied that the head is more suitable as a fall-
back modality for gaze than a controller. The Hands-free and Eye+Head
techniques were among the quickest and most accurate techniques. A
possible explanation for this could be that the motions performed dur-
ing head-pointing were similar to the eye-head coordinated motions
performed during gaze-pointing, and that the head does not suffer from
factors such as hand tremors. Furthermore, an interesting result from
the study was that participants were quicker with the Hands-free tech-
nique in the Accuracy and Precision conditions, where gaze was used in
conjunction with the head, than in the Both condition, where users only
relied on the head. These results point towards the benefits of having a
continuous transition to a fallback modality, as gaze can still be used
when it is too noisy for stand-alone use, it is helpful when moving the
cursor quickly to the target, and it lowers the required pointing accuracy
for the fallback modality.

For the controller techniques, with the exception of the No error
condition, there were little performance differences between the other
Error conditions. These results suggest that the techniques may handle
accuracy and precision errors, as well as their combination, while still
providing opportunities for stable interaction. However, the results also
point towards improvements that can be made to reduce the amount of
head or controller movement needed to refine inaccurate gaze signals.
While using the weighted mean to select the current pointing position
proved effective in dealing with gaze error, future research should
investigate other weighting functions that could be used to combine
gaze and fallback modalities, and which may be more suitable than the
controller as a fallback modality.

Both the Relative and Trimodal techniques demonstrated how rel-
ative movements can be used to minimize the controller movements
needed for selection. However, the selection time and error rate results
also highlighted weaknesses with the implementation of these tech-
niques. For example, the controller would naturally follow the body
movements needed to reach distant targets, causing an offset from the
neutral direction which affected the cursor position. Other devices such
as the Myo armband, which can detect wrist flexion and extension,
could be used as an alternative input device to avoid this issue. Further-
more, as highlighted by performance and usability metrics, the Relative
technique proved difficult to use when there was additional precision
error as the fallback modality was partially gaze-based, thereby high-
lighting that all types of eye tracking error have to be considered when
choosing a fallback modality. More research is needed to understand the
influence of each type of eye tracking error on selection performance,
as has been done in collaborative settings [17, 48]. Furthermore, these
results indicate that additional interaction parameters can be adapted to
eye tracking error. For example, expanding Np when precision error is
detected could smoothen the additional noise.

6.2 Limitations
The study results provided little evidence that participants had issues
adapting to new error levels. However, we only considered one level
of accuracy and precision error, and did not include data loss for prac-
tical reasons. Furthermore, we did not formally investigate whether
a sudden transition in error affects performance, so this should be a
future direction of research. A key aspect of adapting to new error
levels is visualizing the current mode of interaction. In our work, we
used cursor transparency and target highlighting to visualize pointing
and selection feedback. However, purely visual feedback mechanisms
may be problematic in certain situations, such as when switching to
a controller that is pointing outside of a user’s field of vision. An
interesting area of research could be to investigate different types of
feedback, such as haptic or auditory, to indicate the current mode of
interaction to the user.

Our study used synthetic noise to simulate eye tracking accuracy and
precision. Using the techniques in the wild may result in different tech-
nique behaviours and performances. In addition, we did not formally
test data loss and related noise artifacts in our study. Although data loss
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was present in the study in the form of user blinks, long and frequent
periods of data loss may impact the results. The use of synthetic noise
is mainly a practical aspect as it may be difficult who struggle with
the sensor while also controlling study conditions. Future research
could introduce artificial eye tracking noise that is more in line with
in the wild eye tracking noise and encourage a standardized way to
evaluate the impact of noise as various synthetic noise functions have
been employed in previous work [28,46,48]. Such developments would
be beneficial when comparing different approaches to handling eye
tracking noise and evaluating existing gaze-based techniques’ ability to
cope with errors.

Furthermore, the study only investigated target selection in an ab-
stract environment without any distractor targets. Further research
needs to be done to evaluate the techniques in more natural settings.
Occlusion is interesting to investigate as targets are closely placed
together, and occlusion lessens the effective target width making inter-
action more difficult, especially with noisy data [66, 77]. The impact of
data noise on interaction has to be further investigated within applica-
tions and natural environments beyond controlled lab environments.

A current weakness of our implementation of the Weighted Pointer,
similar to other error-aware techniques, is that they are dependent
on a user calibration step to generate the data needed to model eye
tracking errors. Ideally, the Error Detection Model should seamlessly
detect and update itself without repeated user calibrations. Several
projects have investigated this approach for 2D and 3D interfaces [18,
65] but these proposed solutions have yet to replace explicit calibration
methods. Compared to gaze-only, error-aware interfaces, using fallback
modalities has the advantage of not needing to know the direction of
the current eye tracking error and instead only needing to know of
its existence. This loosens the requirements for the Error Detection
Model and could make it easier to implement and deploy seamless
re-calibration techniques to continuously update the current error.

6.3 Future Work

The individual parts of the Weighted Pointer (i.e., Error Detection
Model, Weighting Model, Pointing Techniques) are replaceable, mak-
ing it possible to swap out components to change pointing behaviours.
This opens up an exciting design space, where different components
could be swapped and compared to provide the best user experience
given a certain context. Although the present work assumed that the
fallback modality was stable, this may not always be the case. In future
work, it would be useful to investigate how Weighted Pointer techniques
could be adjusted so that the Error Detection Model and weightings
could be dependent on the errors from both modalities.

Furthermore, adapting interaction to the current signal noise is not
limited to gaze-based interaction and eye tracking errors but may also be
useful for other sensors that have tracking issues or for modalities that
may have participant-specific factors such as hand tremors. Gaze can
easily be replaced as the main modality within the proposed techniques
and different modalities could be used in combination. Furthermore,
this concept could be further expanded to include switching modali-
ties based on other factors such as social acceptance [34] and one’s
available range of motion [76]. For example, a hand-based interaction
system could switch to gaze as a fallback modality in crowded environ-
ments where one’s range of motion may be limited and in-air gestures
would be socially uncomfortable. This opens up many research av-
enues to explore to investigate ways of switching modalities to ensure
comfortable and efficient interaction irrespective of user context.

Lastly, although the results from the study were obtained in VR, we
do not expect this to limit the applicability of the Weighted Pointers
or the findings. The Weighted Pointer may be especially useful in
AR settings that have to adapt to a multitude of environmental and
contextual changes which may severely impact eye tracking data qual-
ity. Providing a smooth and stable user experience within the wider
population is a key requirement for gaze-based interaction in AR and
a significant future area of research. Being able to adaptively swap
to different modalities could be a way to achieve this and opens up
exciting research opportunities within AR interaction.

7 CONCLUSION

This research presented Weighted Pointer techniques that utilized fall-
back modalities alongside error-aware, gaze-based pointing interaction
techniques to provide stable interaction in the event of eye tracking
errors brought about by accuracy, precision and data loss issues. An
evaluation of the techniques found that they were more performant and
preferred than the use of manual techniques to switch between modal-
ities, however, the choice of which backup modality was used had a
significant impact on user performance. The notion of using backup
modalities when sensor noise is present extends beyond traditional gaze-
based pointing techniques, and thereby presents new opportunities for
adaptive interfaces that do not hamper user experiences.
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