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Fig. 1. PhenoLines facilitates the visual analysis of topics that describe disease symptoms, in support of topic model optimization and
characterization. Hierarchical relationships, temporal trends, correlated measures, and rank-ordered lists enable for comparisons within
and between topics. The interface includes (A) Settings Panel, (B) Detail Panel, (C) Topics Panel, and (D) Search Panel.

Abstract—PhenoLines is a visual analysis tool for the interpretation of disease subtypes, derived from the application of topic models
to clinical data. Topic models enable one to mine cross-sectional patient comorbidity data (e.g., electronic health records) and construct
disease subtypes—each with its own temporally evolving prevalence and co-occurrence of phenotypes—without requiring aligned
longitudinal phenotype data for all patients. However, the dimensionality of topic models makes interpretation challenging, and de
facto analyses provide little intuition regarding phenotype relevance or phenotype interrelationships. PhenoLines enables one to
compare phenotype prevalence within and across disease subtype topics, thus supporting subtype characterization, a task that involves
identifying a proposed subtype’s dominant phenotypes, ages of effect, and clinical validity. We contribute a data transformation workflow
that employs the Human Phenotype Ontology to hierarchically organize phenotypes and aggregate the evolving probabilities produced
by topic models. We introduce a novel measure of phenotype relevance that can be used to simplify the resulting topology. The design
of PhenoLines was motivated by formative interviews with machine learning and clinical experts. We describe the collaborative design
process, distill high-level tasks, and report on initial evaluations with machine learning experts and a medical domain expert. These
results suggest that PhenoLines demonstrates promising approaches to support the characterization and optimization of topic models.

Index Terms—Developmental disorder, Human Phenotype Ontology (HPO), Phenotypes, Topic models, Topology simplification.

1 INTRODUCTION

The characterization of complex developmental disorders, such as
autism spectrum disorder (ASD), is a challenging and important task.
In such diseases, the heterogeneity in symptom presentation and a
lack of definitive diagnostic tests cause difficulties for diagnosis and
prognosis: clinicians must rely on their experience to identify the
disorder by observing the co-presentation of symptoms (i.e., symptom
comorbidity), as well as make predictions about how the disease will
evolve for a particular patient to determine treatment and care.
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Symptoms are described by phenotypes—observable and measurable
traits of patient morphology (e.g., enlarged heart), physiology (e.g.,
seizures), or behavior (e.g., depression)—and diseases are characterized
by the probability of phenotype co-presentations. Characterizing
diseases is challenging for complex developmental disorders because
multiple disease processes may result in similar symptoms, and a single
disease process may present differently in each child. For example,
two children may have similar core ASD symptoms (e.g., language
disorders), but only one may have severe gastrointestinal symptoms.
Do the patients belong to different disease subtypes, or does one have
two unrelated disorders? Symptoms may also vary as a child ages.
An underlying neurological condition may produce convulsions in
infancy and intellectual disability in childhood. Developing a robust
understanding of how phenotypes manifest and evolve over time for a
particular disease (i.e., disease natural history) is critical to improving
the accuracy of diagnosis and prognosis.

To support the study of disease natural history, researchers have
applied machine learning approaches to characterize diseases based
on electronic health record (EHR) data via clustering [16], deep
learning [8], support vector machines [35], and topic models [20].
In contrast to traditional longitudinal cohort studies of several hundred
patients, machine learning enables analyses of tens of thousands of
patients, thereby improving the differentiation of correlations between
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heterogeneous phenotypes from spurious co-presentations of symptoms.
This work focuses on improving the analysis workflow for topic
model-based approaches to disease characterization.

Topic models can be trained on the symptoms of patient subsets
across many ages, and then linked to create ad hoc disease history
models based largely on cross-sectional data (i.e., EHRs). The resulting
topics estimate the temporal evolution of phenotype probabilities
that describe latent disease processes. Investigating the pattern of
dominant phenotypes across topics can yield characterizations of
disease subtypes [17, 20]. Consulting medical experts, who contribute
domain knowledge to characterize and evaluate the clinical validity
of topic models, can inform directions for debugging and refining the
topic models. During this iterative cycle of model characterization
and optimization, it is critical to investigate the patterns of modeled
phenotypes both within, and between disease subtypes—e.g., what
phenotypes are most prevalent in each disease subtype, what pheno-
types are common in some subtypes but not in others, and how do the
prevalence of phenotypes in a disease subtype change over time.

Due to the high dimensionality of topic models, de facto analyses
often summarize topics using a subset of the modeled phenotypes
(e.g., highest probability). These topic summaries may not accurately
represent the semantic relationships between phenotypes. Phenotypes
are not isolated, rather, they are indicative of higher-level biological
systems (e.g., general neurological abnormalities). Each modeled phe-
notype also reflects a temporal evolution of probabilities (e.g., trends)
that should be evaluated in tandem with the patterns of phenotypes
in topics. Existing topic model analyses do not represent modeled
phenotypes using hierarchical semantic relationships, and no tools exist
to visualize the hierarchical and temporal dimensions of phenotypes
through tightly-coupled interactive exploration.

We address the representation of semantic relationships by lever-
aging the taxonomy of the Human Phenotype Ontology (HPO) [32],
which represents an anatomical hierarchy of subclass relationships
between phenotypes, including multiple-inheritance (i.e., one or more
superclass phenotypes). Using these relationships, the probabilities of
modeled phenotypes can be aggregated to more general phenotypes,
revealing higher-level patterns localized in biological systems. This
enables disease subtypes to be characterized by considering phenotypes
at multiple granularities (i.e., specific and general).

To this end, we contribute a data transformation workflow that pro-
cesses unstructured topic model output into a graph-based abstraction
using the topology of the HPO. This graph unifies the representation
of both hierarchical and temporal aspects of modeled phenotypes. Yet,
this graph poses challenges for visualization, as topic model output
comprises thousands of modeled phenotypes, each with a temporal
component, and a complex hierarchical structure. A novel measure
of relevance was developed to simplify the graph topology through
filtering and compression, by leveraging existing prevalence data
annotated to the HPO. We demonstrate the graph can be transformed
into visualizations for different vectors of analysis (i.e., radial hierarchy,
timeline charts, scatterplots, summary table, and rank-ordered list).

In this work, we present PhenoLines, a visual analysis tool for the
interactive interpretation of disease subtypes derived via topic models,
based on this data transformation workflow. PhenoLines was designed
to support machine learning experts when optimizing topic models,
and facilitate characterization sessions between machine learning and
medical experts. We describe the collaborative design process that we
undertook to develop PhenoLines. Finally, we report the results of an
initial evaluation using topic models derived from a dataset of ASD [16].
The evaluations include use by a collaborator, feedback from two third-
party machine learning experts, and an in situ characterization session
with a development-behavioral pediatrician. PhenoLines is an open
source project; visit www.phenolines.org for an online demonstration,
link to the GitHub repository, and license information.

2 BACKGROUND AND RELATED WORK

Our work builds upon research in machine learning and the visualiza-
tion of topic models and longitudinal medical data.

2.1 Topic Models of Clinical Data
Topic modeling is a machine learning approach for modeling discrete
admixtures, first popularized for extracting themes from document
collections [3]. The underlying assumption is that a dataset can be
modeled as a set of topics1, each of which are probability distributions
over words—or in our case, phenotype terms. For example, a topic
about neurological disorders may have high probability on phenotype
terms such as seizures or migraines. The presentation of phenotypes for
any patient can then be represented as a mixture of topics. For example,
a patient with only neurological symptoms might have a high weighting
associated to a topic about neurological disorders, while a patient with
neurological and gastrointestinal concerns may be best represented by
a mixture of two or more topics. The weighting applied to each topic
can help label and cluster patients with similar disease presentations.

Topic models have been extended to describe the temporal evolution
of topics [2, 54]. When applied to disease characterization, these topic
models capture the evolution of phenotype prevalence as a patient ages.
Thus, the resulting topics can help identify insightful presentations of a
disease’s progression or to differentiate disease subtypes. Topic models
have been shown to be effective for characterizing diseases [17] and
predicting patient outcomes in intensive care units [28, 42].

Visualization can address the challenge of interpreting and val-
idating topic models [7]. In our work, we address interpretation
and validation through visualizations that facilitate characterization
and inform optimization. The iterative cycle of characterization and
optimization identifies phenotype patterns that are inconsistent with the
expectations of medical experts, enabling machine learning experts to
target improvements to the topic model.

2.2 Visualizing Topic Models
The popularity of topic model-based text summarization motivated
the design of a number of visualization systems to interpret document
collections. Topic models have been leveraged in visualizations to
organize documents into meaningful dimensional projections [9, 29,
41], clusters [34], and relationship networks [25]. Topic modeling
has also been tightly integrated with interactive visualization to de-
scribe document collections (e.g. TIARA [37], ParallelTopics [18],
TextFlow [13]). These systems assume a flat organization of topics, and
use a river-flow metaphor or Sankey diagrams to visualize the temporal
evolution of topics over time. As the number of topics increases,
these representations become visually cluttered. To address scalability,
hierarchical organizations of the evolution of topics were proposed (e.g.
HierarchicalTopics [19], RoseRiver [14], TopicPanorama [36]). These
approaches rely on the automated or semi-automated construction of
topic hierarchies by clustering topics based on word similarity.

Disease subtype analysis can be distinguished from the thematic
analysis of documents based on the focus on words, rather than topics.
Themes summarize how topics evolve in relation to one other (e.g.,
themes relating to war or recessions wax and wane corresponding
to historical events). In contrast, disease subtypes characterize the
evolution of words (i.e., phenotype terms) across the time steps of
individual topics. While prior work uses hierarchy to organize clusters
of related topics, our approach uses a hierarchy to classify the phenotype
terms within topics. A hierarchy produced by clustering is based on
the words in the topics, and optimizations to the topic model may yield
different hierarchies as the topics change. In contrast, the taxonomy of
the HPO is a hierarchy that is independent of the topic modeling process,
and thus consistent for different topic models, while the subclass
relationships represent a classification of phenotype terms based on
domain consensus. In summary, the hierarchy of the taxonomy not
only summarizes probabilities to more general phenotype terms, but
also communicates how phenotype terms relate to each other across
different biological systems.

Topic models do not automatically provide meaning—they must be
manually interpreted and evaluated by domain experts [7]. The Topic
Browser [22], Termite [12], LDAvis [50] and LDAExplore [21] focused
on verifying model quality through visual comparisons of how well

1We will use topic, disease process, and disease subtype interchangeably.
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topics relate to each other and how well terms associate with each topic.
Our work most closely relates to visual analysis tools that support the
manual inspection and verification of the relevance and meaningfulness
of latent topics. Chuang et al. [11] proposed a framework to support
the large-scale assessment of topic relevance by aligning a set of latent
topics and a set of reference topics, visualized as a correspondence
chart. Since no reference topics exist in our domain, we propose a
novel approach to estimate phenotype relevance by leveraging existing
prevalence estimates via the HPO.

2.3 Visualizing Longitudinal Medical Data
A wealth of visualization tools has been developed to explore patient
EHRs. Most efforts focus on patient medical histories in a time-oriented
context, including monitoring a patient’s condition (e.g., LifeLines [43],
VisuExplore [45]), analyzing response to a treatment (e.g., IPBC [10],
CareCruiser [26]), and comparing evolving symptoms to a baseline
(e.g., Lifelines2 [53], LifeFlow [56]). See Rind et al. [46] and
Shneiderman et al. [49] for reviews in this area. Clinicians find these
tools helpful when determining a course of treatment for acute or
chronic patient problems. Visualizations have also been developed
to investigate data from longitudinal cohort studies, such as for the
iterative refinement of event queries (e.g., CAVA [57]), to define
temporal cohort membership constraints (e.g., COQUITO [33]), or
to evaluate the effectiveness of treatments (e.g., CoCo [38]). Unlike
the present work, these tools focused on extracting and visualizing
sequences of events about specific patient events from EHR data. Our
work focuses on the comparing and interpreting the temporal evolution
of phenotype probabilities within and between disease subtypes. To our
knowledge, our work is among the first visualizations of topic models
applied to disease characterization.

3 COLLABORATIVE DESIGN PROCESS

The design of PhenoLines was a collaboration between researchers in
visualization and machine learning. The collaboration was initiated
because the machine learning researchers expressed an interest in
applying the taxonomy of the HPO to help visualize their topic models.
In this section, we is used to describe the design process from the
perspective of the visualization researchers. To facilitate a systematic
design process, we adapted the nine-stage design study methodology
framework [48]. PhenoLines was developed over six months, during
which we worked closely with the machine learning researchers, who
took on the role of domain experts. Here, we summarize the four stages
of the Core Phase of the design process.

Problem Characterization. In the Discover Stage, we investigated
the problem of disease subtyping via topic models. First, we conducted
two formative interviews with the machine learning researchers to learn
about their research, observe existing tools, and discuss barriers to
analysis. We followed-up with two semi-structured interviews to elicit
specific details about their data, their workflow, and the types of analysis
goals that could be supported through visualization. The transcripts
of these interviews were coded to identify needs and requirements,
which were distilled into abstract visualization tasks (Section 4). Two
core requirements emerged: the hierarchical visualization of disease
subtypes to identify interesting phenotypes, and the need to compare
the temporal evolution of phenotype probabilities between subtypes.

Data Abstraction and Visual Encoding. In the Design Stage, we
worked closely with the machine learning researchers to develop a
graph-based data abstraction based on the taxonomy of the HPO, and
evaluate visual encoding strategies. The machine learning researchers
provided us with output from a topic model they had previously
analyzed. This enabled iterative development and refinement of the data
abstraction and visual encodings, as the machine learning researchers
could confirm when expected patterns and insights were revealed.

The data abstraction addressed the requirement of hierarchical
representation. The modeled phenotypes of each disease subtype
became leaf nodes, and the probabilities were aggregated to more
general phenotypes in the hierarchy. Working with the machine learning
experts, we tested different measures to summarize the temporal
evolution of phenotype probabilities as a single value that could be

explicitly encoded in visualizations. Based on feedback from the
machine learning experts, the measures of maximum probability, trend
slope, and representative age interval (peak probability) best helped
identify potential phenotypes of interest.

Implicit hierarchies (i.e., space-filling) were preferred over explicit
representations because they resembled heatmaps; compactly encoding
the node values and revealing patterns in the hierarchy (e.g., branches
with similar values). Radial hierarchies were selected because they
more evenly allocated size across all levels of the hierarchy, which was
important because leaf nodes were crucial to the analyses.

To compare the temporal evolution of phenotype probabilities
between subtypes, we tested explicit encodings of the differences (e.g.,
variance, mean-squared error, entropy). The machine learning experts
found these measures were inflexible for the detailed comparisons
necessary for analysis. They preferred juxtaposed timeline charts to
compare the probabilities of phenotypes because the output from the
topic model was directly represented. These timeline charts supported
flexible comparisons as the need arose, making it easier to pinpoint
specific differences that could be hidden in a summary measure.

Through the collaborative design work, it became clear that hier-
archical and temporal representations alone did not provide all the
necessary perspectives on the data. To mimic the existing workflow
of the machine learning researchers, we incorporated a rank-ordered
list of the phenotypes in each topic model to support summarization.
As we developed the summary measures, our collaborators expressed
a desire to visualize correlations between the measures within and
between topics, resulting in the scatterplot and summary chart. The data
transformation workflow and the computation of summary measures
are described in Section 5.

Initial Prototype and Refinement. In the Implement Stage, we
developed an interactive prototype using D3 [5]. The machine learning
researchers were asked to evaluate features and report on bugs. During
this stage, the Settings Panel (Fig. 1A) was developed to address
configuration of the visualizations. The relevance score and hierarchy
filtering and compression methods were developed to address visual
complexity. We continued to refine and extend the prototype over four
weeks to address usability issues. With each update, we were able to
attain richer feedback due to improved features and usability. Iterative
refinements continued until the machine learning researchers were
satisfied they could use the prototype to make sense of, hypothesize
about, and investigate the models they had produced. The resulting
functional prototype is described in Section 6.

Functional Prototype Deployment. In the Deploy Stage, the
functional prototype was evaluated by the machine learning researchers
and two third-party machine learning experts. The prototype was
also used by the machine learning researchers to conduct a disease
characterization session with a medical expert. These evaluations
address the top three levels of Munzner’s Nested Model for Design and
Validation [40]. Details of these evaluations are found in Section 7.

4 DISEASE SUBTYPE ANALYSIS

The problem characterization yielded insights into disease subtyping via
topic models, key tasks, and existing analysis methods and challenges.
We synthesize how visualization could improve the analysis workflow,
and characterize the domain tasks as abstract visualization tasks.

4.1 Clinical Data and Topic Models
The machine learning researchers expressed a desire to characterize and
optimize new topic models generated from an existing dataset of autism
spectrum disorder (ASD) patients collected from Boston Children’s
hospital [16]. This dataset included the comorbidity information
of 13,337 patients extracted from a corpus of 66,275 EHRs, and
was preprocessed to represent the comorbidity data using unique
term identifiers (CUI codes) from the Unified Medical Language
System (UMLS) [4]. The UMLS is a meta-thesaurus that provides
terminological mappings between a variety of medical vocabulary
systems, including ICD, SNOMED CT, and HPO.

The machine learning experts explained the comorbidity data was
partitioned into 15 mutually exclusive age time steps (0 to 14 years)
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for the purposes of topic modeling. The CUI codes associated with
each patient at each time step was considered a document using a
bag-of-words representation. To reduce noise in the model, only the
5,000 most frequent CUI codes in the corpus were retained. A standard
Latent Dirichlet Allocation (LDA) [3] model was applied to each of
the 15 time steps independently. For each time step, a seven-topic
LDA was trained using gensim [44], with both symmetric priors and
hyper-parameter optimization. This process resulted in seven topics at
each time step. The Kuhn-Munkres algorithm [39] was used to create a
bipartite matching of topics at adjacent time steps, resulting in seven
disease process models, each describing the phenotype probabilities
for a disease subtype over the 15 time steps. The machine learning
researchers provided us with the final output of the topic model, in the
form of tuples (Topic ID, Time ID, CUI, and Probability).

4.2 Key Tasks
The formative interviews revealed that topic model researchers engage
in an iterative process of topic model characterization and optimization.

4.2.1 Disease Subtype Characterization and Validation
The interviewees explained that the primary goal when interpreting
their topic models is the characterization of modeled disease subtypes.
This process involves an evaluation of the dominant phenotypes in each
of the topics, but also benefits from a higher-level understanding of
which biological systems are affected—e.g., dominant neurological
phenotypes may indicate a broad correlation between these symptoms,
or point to specific developmental disorders or psychiatric conditions.

During this task, machine learning researchers often consult medical
domain experts to ascertain whether the characterizations derived
from the topic models align to known comorbidities of the disease,
and whether they reveal new correlations that were not expected.
These conversations can also shed light on whether novel patterns
are scientifically interesting, or reveal biases present in the dataset.

4.2.2 Topic Model Debugging and Refinement
Topic models are optimized by improving prior estimates of phenotype
prevalence. The interviewees explained that due to the non-linearity of
the search space in topic modeling, the model results must be checked
to ensure unexpected effects are not introduced whenever the topic
model is modified. The output also needs to be verified to ensure that
existing features continue to be captured. If the refined model includes
unexpected changes in the definition of topics, it is necessary to drill
down into the details to investigate where the changes originate.

Feedback from the topic characterization efforts can also guide
optimizations. For example, one interviewee explained that a com-
mon issue transpires when a phenotype occurs with relatively high
probability across multiple topics—in some cases, this pattern may be
perfectly valid, indicating that the phenotype is common but irrelevant
to differentiating disease subtypes. In other cases, it may indicate that
a poor choice of prior estimates prevented differentiation.

4.3 Existing Analysis Methods and Barriers
The machine learning researchers explained that specialized tools for
in-depth exploration of disease topic models are currently unavailable.
They typically write custom analysis scripts to summarize topics based
on the modeled phenotypes with highest probability in each topic and
at each time step. Due to the large number of phenotypes, only a fixed
number of the highest probability phenotypes are typically evaluated.
They noted a shortcoming of this approach is that it does not consider
higher-level affected biological systems. The interviewees reported they
manually produce timeline charts of temporally evolving probabilities
to investigate the trends of specific phenotypes, but this is a tedious,
error-prone, and time-consuming process.

This largely manual process of analysis impedes fluidity of both
model characterization and optimization tasks. The interviewees
explained that manually creating timeline charts for subsets of pheno-
types impacted the quality of disease subtype characterization sessions
with medical experts. Since charts could not be prepared for all
phenotypes, if discussions with medical experts required details of an

unexpected phenotype, follow-up sessions were necessary to complete
the characterization, which broke continuity of the discussion. They
also noted that the manual analyses made it difficult to maintain an
overview of phenotype probabilities across disease subtypes, impacting
their ability to track the full effects of topic model optimizations.

4.4 Benefits of Interactive Visualization
The de-facto approach of displaying only the highest probability
phenotypes, without consideration of their hierarchical relationships,
can result in incorrect scientific interpretation. For example, there are
over 20 different phenotypes for convulsion-related phenotypes. A
patient with epilepsy will accrue combinations of these 20 phenotypes
depending both on the details of their sub-condition as well as their
clinician. Thus, a topic relating to patients with epilepsy may put
0.01-0.03 probability on each individual term, which, when summed
result in 0.2-0.3 of the topic having to do with epilepsy (with the rest
of the probability mass having to do with comorbid conditions). In
contrast, terms like intellectual disability and autism have many fewer
associated phenotypes. Thus, a topic relating to patients with these
conditions may put much higher probabilities—0.1-0.2—on individual
phenotypes. If one looked only at the highest probability phenotypes
in such a topic, we might mistakenly believe that the topic was only
about autism and intellectual disability because all other phenotypes
had probability less than 0.05. The hierarchical representation of
phenotypes in topics using the taxonomy of the HPO can provide
context that reveals relationships between individual phenotypes and
can also help identify whether topics differentiate particular biological
systems. This approach could improve on the existing summarization
approaches used by the machine learning researchers.

An interactive visualization system can also address the challenge
of fluidity in characterization and optimization tasks by providing
a consistent visual representation of the topics, making it easier to
track changes resulting from optimizations. Characterization sessions
can benefit through an interface to view details on demand for any
phenotype in the topic model.

4.5 Visualization Tasks
We classified the identified domain tasks in terms of abstract visualiza-
tion tasks using Brehmer & Munzner’s Multi-Level Task Typology [6].

Considering Why? users perform tasks, both aim to discover, but
differ in search and query approaches to interpret the underlying
data. The Characterization and Validation task is oriented toward
identifying specific phenotype co-presentations and trends in the
temporal probability distribution. In this case, the target is known,
so search involved locate (location known) and explore (location
unknown). Through query, the goal of this task is to identify and
compare the phenotypes within topics. In contrast, the Refinement
and Debugging task is primarily concerned with the high-level patterns
of phenotype temporal probability distributions between topics. In
this case, the target is unknown, so search involves browse (location
known) and explore (location unknown). Through query, the goal of
this task is to compare or summarize the differences between topics.

To address How? users complete tasks, our design process revealed
the need to encode unstructured topic models output in hierarchical
and temporal visual representations, among others. We thus developed
a graph-based data abstraction that can be transformed into task
oriented visual representations. Using this graph, summary measures
of the temporal evolution of phenotype probabilities were developed
to compare and summarize broader trends between topics, and also
identify specific phenotypes within topics. Visual encoding strategies
were used to represent specific details to support comparisons. For
example, the summary table and timeline charts enable comparison
through juxtaposition, while scatterplots and rank-ordered lists explic-
itly represent relationships between data attributes. Due to the variety
of visual representations, users manipulate the visualizations through
select, arrange, and change operations that maintain a consistent layout,
rather than navigation. To address visual clutter and complexity, we
support filter and aggregate operations by developing a novel measure
of phenotype relevance.
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5 DATA TRANSFORMATION WORKFLOW

The interactive analysis of disease topic models required a data
abstraction that represented the hierarchical and temporal aspects of the
topics. To this end, we developed a workflow to map CUI codes from
the topic model output to phenotype terms in the HPO, and leverage
the taxonomy of the HPO to derive a graph-based data abstraction of
the modeled phenotypes.

5.1 Human Phenotype Ontology (HPO)
The HPO is one of the most broadly used ontologies for phenotypes. As
an on-going initiative, the HPO standardizes terminology and defines
relationships between phenotypes (i.e., semantic, logical, hierarchical).
The HPO facilitates interoperability with external resources that link
genes, phenotypes, and diseases (e.g., OMIM, Orphanet) [47] and
currently includes over 11,000 terms with over 250,000 annotations to
rare and common diseases. Although other medical nomenclatures (e.g.,
ICD, SNOMED CT) have hierarchical structures, those categorizations
are oriented around medical billing or exhaustive lists of medical
terms, including procedures and anatomical parts. In contrast, the
HPO classifies the semantic relationships between phenotypes, directly
representing symptoms of diseases within biological systems.

Leveraging the structure and external resource integration of the
HPO enables computation on phenotypes that is not possible using
current EHR coding nomenclatures alone (e.g., ICD, SNOMED CT).
For example, similarity scores between patients with non-overlapping
phenotypes can be calculated and concepts like the diagnostic sig-
nificance of a phenotype can be quantified [31]. In prior work, we
demonstrated the application of the HPO to visualize phenotype data
within a hierarchical semantic context [23, 24]. In this work we extend
this approach to calculate a novel relevance score that enables filtering
of phenotypes and simplification of the topology.

5.2 Mapping Topic Model Results to HPO
Recent evaluation of HPO content coverage in UMLS showed that term
coverage was only 54% [55]. Although additional HPO mappings were
added in the 2015AB UMLS release [15], we still discovered that only
10-20% of topic results terms had mappings. To further improve the
coverage of mappings from CUI to HPO, we utilized a deep learning
approach to map text descriptions to HPO terms that is being developed
in our lab [1], improving term coverage to 80-90%.

We manually audited the terms to ensure that the terms with
higher probabilities (>0.001) were being correctly represented. To
fix remaining errors, we introduced a curation layer to the mapping
process that overrode results from the deep learning approach. The
goal of this data mapping process was not to develop a generalized
approached, but to ensure that our data was accurately represented using
HPO terms. Efforts to improve mappings between medical vocabularies
are a continuous effort and outside the scope of the present work.

The resulting data mapping process thus mapped individual CUI
codes to HPO terms. These HPO terms were then used to extract
relevant subgraphs of the HPO, using the method of our prior work [23,
24]. In so doing, probabilities for multiple CUI codes that mapped to
the same HPO term were aggregated. Additionally, the subsumptive
“is-a” relationships of the HPO supported logical inferences to higher-
level phenotypes, enabling probabilities of specific phenotypes to be
aggregated up the hierarchy to the root. The result is a multi-level
description of increasing granularity, where more general phenotype
terms combine the probabilities of more specific phenotype terms.

5.3 Computing Summary Measures
Based on the collaborative design process, we developed a set of
measures to summarize the temporal evolution of each phenotype’s
probabilities to facilitate comparisons: maximum probability, trend
slope, representative age interval, and relevance score. Without the
graph-based data abstraction, it would not be possible to calculate
temporal summary measures over the hierarchy of phenotypes.

We used two levels of age intervals to compute these summary mea-
sures: the overall time interval (0-14 years), as well as four discrete age
intervals, which align to developmental milestones: neonatal/infantile

(0-2 years), childhood (2-5 years), early juvenile (5-10 years), and late
juvenile 10-14 years. These derive from the Age of Onset term in the
HPO, although we subdivide juvenile into early and late in order to
subdivide this longer interval.

5.3.1 Maximum Probability and Trend Slope
To summarize the estimated probabilities of each phenotype over
patient age, we calculate two measures to summarize the overall time
interval as a single value: the maximum probability and the slope of
the linear regression fit. These statistics were chosen because they
helped identify the most important probability and the magnitude of
the change, respectively.

5.3.2 Representative Age Interval
To identify the age interval where the highest probability occurs, we
compute the 95th percentile probability in each of the four discrete age
intervals. The interval with the highest value is chosen as representative
for a given phenotype. This coarse measure helps to localize the age
interval where the peak probability of the phenotype occurs.

5.3.3 Relevance Score
To guide the interpretation of disease subtypes, we developed a novel
measure of relevance for each phenotype to help identify phenotypes
that are more likely to be unique to the modeled disease, regardless
of the modeled probability. This relevance score improves upon
the current approach of reducing the phenotype search space by
considering only high-probability phenotypes, and was necessary due
to the hierarchical aggregation of probabilities (i.e., general phenotypes
will have higher probability than specific phenotypes).

The HPO has been used to calculate the frequency with which a
phenotype is associated with known diseases [31]. We apply this
computed frequency as an estimate of expected phenotype probability.
Although this estimate is biased toward rare genetic diseases, repre-
sentative prevalence data is difficult to source. Thus, this estimate was
sufficient as a proof of concept to demonstrate the automatic calculation
of phenotype relevance. The intuition follows that phenotypes with
both a high expected probability and a high modeled probability are
less unique, while phenotypes with a lower expected probability and a
higher modeled probability are more likely to be unique to the disease.

To calculate the relevance score, we compute the difference between
the probabilities of phenotypes in the topic model and the expected
probabilities derived from the HPO. Let X be a phenotype in the
topic model, then Pmodel(X) is the phenotype probability in a topic
at one time step and Pexpected(X) is the expected phenotype probability.
We calculate the magnitude of the difference between Pmodel(X) and
Pexpected(X) using the signal to noise ratio:

SNR(X) = 10log10(Pmodel(X))−10log10(Pexpected(X)) (1)

The distribution of SNR is used to identify relevant phenotypes by
assigning a percentile threshold, i.e., the phenotypes with larger positive
differences in the right long-tail of the distribution indicate phenotypes
with low expected and high modeled probability (Fig. 2).

Fig. 2. An example SNR distribution for one topic at one time step. A
percentile threshold can be used to identify the most relevant phenotypes
in the right long-tail. The boxplot shows IQR and 5-95 percentiles.
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6 PHENOLINES DESCRIPTION

PhenoLines is an interactive visual analysis tool that was designed
using the data transformation workflow. Three visual representations
are used to summarize phenotypes within topics (i.e., radial hierarchy,
scatterplot, rank-ordered list) and two to summarize phenotypes across
topics (i.e., summary table, timeline charts) (Fig. 3).

To co-ordinate between these visualizations, PhenoLines supports
fully-linked views. Phenotypes, represented as regions, points, or text,
can be hovered-over or selected in the radial hierarchy, scatterplot, and
rank-ordered lists to display detailed information using the summary
table and timeline charts. Selecting a phenotype locks it as the default
for detailed information in the Detail Panel (Fig. 1B). A keyword search
supports the direct look-up of specific phenotype terms (Fig. 1D).

6.1 Compare Within Topics
The Topics Panel (Fig. 1C) provides an overview of all topics, organized
into columns of visualizations for each topic. Three visualizations are
used to describe each topic: a radial hierarchy, a scatterplot, and a
rank-ordered list (Fig. 3C,D,E). These visualizations enable a user to
explore the dominant phenotypes within each topic, supporting browse
& explore search, through identify & compare queries.

We support these explorations through multiple visual representa-
tions (encode) that can be customized (arrange & change). The Settings
Panel (Fig. 1A) enables the visual representations to be configured
based on the analysis. For example, the user can change the summary
measure used to define the fill color of all visual representations
in the Topics Panel (Fig. 4). Color palettes were adapted from
ColorBrewer [27]. The fill color thus explicitly encodes the temporal
evolution of phenotype probabilities (i.e., maximum probability, trend
slope, representative age interval).

The radial hierarchy represents the semantic relationships between
phenotypes (Fig. 3C). General phenotypes are at the center (root), and
grow in specificity toward the periphery (leafs). The user can set the
arc length of each region to represent the maximum probability of each
phenotype (Fig. 5A). This supports a top-down approach to phenotype
exploration, whereby dominant high-level phenotypes can be identified,
and then the contributing specific phenotypes can be investigated.

The scatterplot displays correlations between any of the four
summary measures (Fig. 3D). This visualization enables a comparison
of the distribution of phenotypes across the measures, with each
phenotype represented as a data point in the scatterplot. The axes
of the scatterplot can be customized to display different correlations
(e.g., maximum probability v. representative age interval). In addition
to the fill color setting, this enables the visual comparison of up to three
summary measures at a time in the scatterplot.

The rank-ordered list summarizes the phenotypes with highest
probability in each topic (Fig. 3E). The relative probability of each
phenotype is communicated using bar charts adjacent to each term.
The rank-ordered list supports a bottom-up approach to phenotype
exploration, and the list can be filtered based on the height of each
phenotype node in the graph. For example, the list can be limited to
only leaf phenotypes (height=0), to include parents (height=1), or to
include parents and grandparents (height=2). This enables the user to
control the ratio of aggregated phenotypes to display along side the
modeled phenotypes.

6.2 Compare Between Topics
The Topics Panel can also be used to make high-level comparisons
between topics, i.e., how are the phenotypes between topics different,
overall? The user can set the arc length to represent the descendant
count of each phenotype. This supports comparisons of explicitly
encoded values between topics through a consistent representation of
the hierarchy topology, supporting browse & explore search, through
compare & summarize queries (Fig. 5B).

A detailed comparison of a single phenotype across topics is
facilitated through the Detail Panel (Fig. 1B), which contains a summary
table and juxtaposed timeline charts for the phenotype in each topic.
These visual representations support locate & explore search, through
identify & compare queries.

Fig. 3. Phenotypes can be compared across topics (A) summary table
and (B) juxtaposed timeline charts, and also within topics (C) radial
hierarchy, (D) scatterplot, and (E) rank-ordered list.

Fig. 4. The visualizations can encode different summary measures.
Example topic displaying (A) maximum probability, (B) trend slope, (C)
relevance score percentile, and (D) representative age interval.

Fig. 5. Arc length based on (A) maximum probability reveals dominant
phenotypes, or (B) descendant count facilitates value comparisons
between topics through consistent topology. The same two topics are
depicted in both panels; only arc length is changed.

The summary table displays the name of the phenotype alongside
a table of all summary measures, enabling for the detailed comparison
of a single phenotype across all topics (Fig. 3A).

A timeline chart for each topic displays how the probability of
the phenotype changes with a patient’s age. These timeline charts
are vertically juxtaposed to facilitate comparisons along the temporal
dimension of the evolving phenotype probabilities (Fig. 3B).

The Detail Panel complements the Topics Panel: once a phenotype
is identified in the topic charts, the phenotype details can be carefully
inspected and compared across topics and time.

6.3 Filtering Phenotypes and Compressing Hierarchies
To address visual complexity in all visual representations, we use
filter & aggregate approaches to simplify the visualizations. As the
topology of the HPO is complex and supports multiple inheritance, it
can be difficult to fully display [23, 24]. During the Design Stage, it
became apparent that it was unnecessary to show the entire hierarchy
all the time. However, a data-aware approach to non-uniform hierarchy
pruning was required to ensure important phenotypes were not removed.
The graph-based data abstraction and relevance score made filtering and
topology simplification possible, since it allowed systematic traversals
of the phenotype relations and recursive application of relevance
thresholds. As filtering and simplification is carried out on the graph
representation, the effects propagate to all visual representations,
simplifying the radial hierarchy, reducing occlusions in the scatterplot,
and removing phenotypes from the rank-ordered list.
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Fig. 6. Phenotypes can be filtered or compressed using a percentile
threshold on the relevance score distribution. (A) Unfiltered hierarchy.
(B) Filtered phenotypes can be desaturated, or (C) hidden to reduce
breadth. (D) Compression uses two thresholds to eliminate intermediate
phenotypes to reduce depth. An example radial hierarchy is shown here,
but filtering and compression affects all visual representations.

The relevance score is exposed to users as a percentile of the SNR
distribution, and is used to filter less relevant phenotypes by defining
a minimum relevance percentile threshold. Our approach adopted
the Minimum Description Length (MDL) Treecuts method to prune
branches of the hierarchy [52]. MDL Treecuts evaluate the nodes of
the hierarchy recursively to define non-uniform treecuts based on a
measure of importance—in our implementation we use the relevance
score. Thus, branches of the hierarchy are filtered if they do not contain
at least one descendant with a relevance score percentile higher than
the threshold. The user can dynamically set the minimum relevance
percentile threshold to define the aggressiveness of filtering. For
example, phenotypes can be filtered to only include those in the top 10%
of relevance scores by setting the threshold to the 90th percentile. The
phenotypes below this threshold are either displayed using a desaturated
scale (Fig. 6B) or can be hidden from view (Fig. 6C).

Although filtering removes branches from the hierarchy, it does not
reduce depth when leaf phenotypes are also the most relevant. To
address this, we developed a hierarchy compression method, also based
on the relevance score. A secondary percentile threshold is used to
define the minimum relevance score percentile required to display an
intermediate phenotype. Intermediate phenotypes below this threshold
are hidden and descendant phenotypes are merged to reduce the depth of
the hierarchy. A combination of the filtering and compression methods
results in a simplified hierarchical topology that provides higher-level
context, while retaining relevant leaf phenotypes (Fig. 6D).

7 INITIAL EVALUATIONS

We conducted initial evaluations of PhenoLines in two parts. First, to
investigate debugging and refining topic models. Second, to observe us-
age during a characterization session with a developmental-behavioral
pediatrician. Three topic models were generated for the evaluations.

Baseline Model. The Baseline Model was trained using a non-
informative Dirichlet prior based on an equal likelihood that a phe-
notype would appear in any topic. This approach assumes no prior
knowledge about the topics and is often used for initial topic discovery.

Informed Prior Model. The Informed Prior Model used a Dirichlet
prior derived from an empirical optimization that maximized the
likelihood of phenotypes based on their occurrence in the original
data. This symmetric prior promoted the probability of phenotypes
which were known to occur with higher frequency.

Curated Model. The Curated Model used a constrained dataset,
limited to phenotypes that occurred with high probability in the Baseline
Model. Using unsupervised learning, an initial set of terms with high
probability was expanded to include related terms. The resulting set of
terms included 246 phenotypes. The Curated Model was then trained
on this data. This approach removed less relevant terms from the dataset
to reduce the noise and improve differentiation between topics.

7.1 Debugging and Refining
Visualizing the hierarchical and temporal components of the topics
using PhenoLines could help machine learning researchers interpret
topic models for the purposes of debugging and refinement. To
investigate this process, we engaged our machine learning collaborators
to use PhenoLines to identify and explain the differences between the
outputs of the Baseline Model, the Informed Prior Model, and the
Curated Model. We elicited additional feedback from two third-party
machine learning experts through a short-term deployment study to
corroborate our findings.

7.1.1 Informed Prior vs. Baseline
The topics produced by the Informed Prior Model were contrasted
against those of the Baseline Model. Although the expectation was that
the informed prior would yield superior results, a precise understanding
of how the topics improved is needed to guide future refinements.

Our collaborators used PhenoLines to compare and contrast the
topics produced by the Informed Prior Model and the Baseline Model.
In both models, there was little differentiation between topics for
specific phenotypes with high probability, but substantial differentiation
when many related, but low probability phenotypes were aggregated.
By enabling investigations of general phenotypes (i.e., biological
systems), the visualizations helped our collaborators to explain how the
symmetric prior improved topic differentiation. Using a combination
of the radial hierarchies and the timeline charts, specific differences
between the topics could be articulated. For example, two topics having
high prevalence of gastrointestinal abnormalities were distinguished
by their temporal characteristics: one was strongly increasing over age,
while the other was decreasing.

7.1.2 Curated vs. Informed Prior
The insights obtained from the Informed Prior Model suggested the
approach of constraining terms, to filter terms common across the
population and thereby further promote topic differentiation.

The topics produced by the Curated Model were better differentiated
than the Informed Prior Model, and these differentiations extended to
specific phenotypes in three of the topics. Our collaborators again used
the radial hierarchies to identify these differences. For example, two
topics were enriched with neurological abnormalities, but these were
differentiated by more specific phenotypes that indicated prevalence of
mood disorders in one, and psychosis in the other. The radial hierarchy
and timeline charts helped to characterize the differences between the
topics and identify patterns that could be validated with medical experts.

The insights of how topics differentiated in each of the three models
would not have been possible without the hierarchical aggregation of
phenotype probabilities. Had the topics been compared only using the
highest probability phenotypes, the differentiation between the topics
would have been missed.

7.1.3 Third-Party Evaluation
To corroborate our findings and collect qualitative feedback, we
recruited two experienced third-party machine learning experts to
evaluate PhenoLines over a one-week deployment. Both had experience
with topic modeling; one had prior experience with ASD. The tool was
demonstrated in a 1 hour session, in which experts were trained in
the interface and the three topic models were introduced. Experts
were asked to use the tool and complete an online survey to document
their hypotheses and findings after each usage. Each conducted 2-3
analysis sessions, lasting 45 minutes to 1 hour each. A 30 minute
semi-structured interview was conducted after the deployment to collect
detailed feedback, using the survey results to guide the discussion.

Both experts found that the topics produced by the Curated Model
were more discriminative than those produced by the other two models,
and spent most of their time investigating this model. The expert with
no ASD experience identified the same three differentiated topics as
our collaborators. The expert with ASD experience also identified these
topics and commented that he was able to distinguish comorbidities
with which he was familiar. Knowledge of ASD impacted how these
experts used PhenoLines. The rank-ordered list was used in all sessions
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by the expert familiar with ASD, while the expert without experience
started using it as a reference in later sessions. He explained that it
became very useful after he had familiarized himself with the terms,
and that he used the radial hierarchy to learn about the terms and their
relationships. Both experts reported that the radial hierarchies and
timeline charts were the most informative when differentiating topics,
while the scatterplot helped to locate terms with similar summary
measures regardless of their hierarchical and temporal characteristics.

The experts also suggested improvements. Both wanted additional
information from the training data included, such as which CUI codes
were mapped to each phenotype, and the number of patients that were
modeled by each topic. The expert with ASD experience also wanted
to know to what CUI codes the aggregated phenotypes were related.

7.2 Characterization and Validation
PhenoLines was evaluated in situ, during a topic characterization
session between a machine learning researcher and a developmental-
behavioral pediatrician. The session lasted two hours and topics
from the Curated Model were used. The pediatrician had prior
experience reviewing disease clustering results with the machine
learning researcher, but no prior experience with PhenoLines or topic
models. In the first 30 minutes, the machine learning researcher
introduced PhenoLines to the pediatrician and demonstrated how
aspects of the topic model were visualized. Over the next 60 minutes,
the two collaboratively used PhenoLines to characterize different topics
in the model. The final 30 minutes were used for open discussion to
collect qualitative feedback about PhenoLines.

7.2.1 Topic Characterization Results
Of the seven topics in the model, three were characterized as likely to
align with cases the pediatrician was familiar with: (a) children with
a diagnosis of cerebral palsy and ASD, (b) children with an earlier
misdiagnosis of ASD and a later correct diagnosis of ADHD and mood
disorders, and (c) children with an earlier misdiagnosis of ASD and a
later correct diagnosis of psychosis. Another topic was characterized
as a likely catch-all for phenotypes that did not directly relate to the
diagnosis of ASD. The remaining four topics appeared to characterize
diagnoses of ASD occurring at different ages and were differentiated
along comorbidities that the pediatrician was unsure related to ASD.

These results are in line with prior clustering results using this
dataset [16], in which subgroups were identified with primarily neuro-
logical (e.g., seizures), psychiatric (e.g., mood disorders), multi-system,
and undefined characterizations. In addition to replicating these results,
PhenoLines enabled a richer discussion of the specific phenotypes
in each topic. For example, seizures and contractures are highly
correlated with cerebral palsy and this relationship was evident in the
topic having to do with cerebral palsy and ASD. These additional details
provided stronger evidence to support the topic characterizations. The
hierarchical aggregation of probabilities also made the contributions of
specific phenotypes to higher-level phenotypes more apparent.

The pediatrician was particularly interested in the two topics that
appeared to characterize misdiagnoses of ASD. She commented that
specific patient cases of misdiagnosis are very hard to identify in
practice, but are of significant interest to the clinical community. Early
correct diagnosis of mood disorders and psychosis is difficult and a
misdiagnosis of ASD often occurs in such cases. She commented
that there was great value in using the topics to characterize comorbid
phenotypes that could potentially help differentiate these patients earlier
and lead to more robust diagnosis strategies.

7.2.2 Differentiated Roles
An interesting dynamic evolved between the pediatrician and the ma-
chine learning researcher, whereby the pediatrician took on the role of
investigator and the machine learning researcher the role of verifier. The
pediatrician focused primarily on the rank-ordered list. She explained
it was the easiest for her to interpret because she quickly recognized
relevant phenotype terms and efficiently parsed the relative probabilities
that were represented as bars. Since doctors are trained to think in terms
of specific symptoms, it is not surprising that the rank-ordered list most

aligned to her training. However, the rank-ordered list also hides the
complexities of hierarchical relationships and temporal trends, and
could lead to misinterpretations based on an incomplete reading of
the data. Thus, as the pediatrician developed hypotheses, the machine
learning researcher ensured that the hypotheses were grounded in the
data. Using the radial hierarchies, timeline charts, and scatterplots, the
machine learning researcher collected additional evidence to support or
counter the hypotheses developed by the pediatrician in this verification
process. The machine learning researcher commented that without the
holistic perspective provided by multiple visual representations, this
verification task would not have been possible.

The two participants also reflected on differences compared to prior
characterization sessions. In the past, sessions were conducted using
prepared lists and static charts. Although similar representations were
available in PhenoLines, both experts agreed that the interactivity of
the tool greatly improved the flow of the discussion. The interactivity
enabled immediate inspection of any part of the model, whereas in
the past, the machine learning researcher would have had to follow-up
regarding phenotypes for which no materials had been prepared. Using
PhenoLines, the discussion was more fluid and allowed a deeper line
of investigation to occur without interruption.

The machine learning researcher commented that PhenoLines was
integral in facilitating the dialogue with the pediatrician. By supporting
a differentiation of roles, the experts were able to simultaneously attend
to different visual representations and collaboratively develop robust
explanations of the relationships captured by the topics.

7.2.3 Preferred Visual Representations
The rank-ordered list, with the representative age interval color scale,
was used most by the pediatrician and preferred. It enabled her to
quickly draw coarse associations between high probability phenotypes
without necessitating interpretation of the more complex visual rep-
resentations. This combination enabled the pediatrician to speculate
about the topics that characterized misdiagnoses.

On the other hand, the machine learning researcher reported that
the radial hierarchies was most preferred. When preparing for the
characterization session, the hierarchy enabled a top-down approach,
first identifying the dominant biological systems represented in a topic
and then drilling down to the more specific contributing pheotypes.
In contrast, the radial hierarchies were used in a bottom-up manner
during the characterization session. As the pediatrician focused
on detailed phenotypes, the machine learning researcher used the
hierarchies to verify whether the trends of the specific phenotypes that
the pediatrician identified were mirrored in related specific phenotypes
or in more general phenotypes. This verification process proved crucial
to contextualize the topic characterizations.

The timeline charts were reported most useful to compare the
specific age intervals where a phenotype dominated, by looking at
the distribution of probabilities between topics, and to verify the ages
with the most probability mass. This helped to differentiate topics that
captured observations of disease symptoms at an earlier or later age.
Although the representative age interval measure provided a coarse
indication of the age, the timeline charts were critical in verifying the
actual distribution and magnitude of the probability. The machine
learning researcher commented this workflow was efficient when
identifying phenotypes for further investigation. When applying the
representative age interval to the radial hierarchies, judgements could
be made regarding whether related phenotypes presented at similar age
intervals, or whether there was a discrepancy.

Two novel ad hoc usages of the scatterplots were observed. First, the
scatterplots were preferred by both the machine learning researcher and
the pediatrician to compare the maximum probability of phenotypes.
By encoding maximum probability along the vertical axis they could
accurately and simultaneously compare phenotype probabilities, not
only within topics, but also across the topics. Second, the scatterplots
were used to perform A/B comparisons, by selecting a phenotype and
then quickly hovering over other phenotypes to flip the information
displayed in the Details Panel. These observations can inform improve-
ments to the interface to address these analysis use cases.
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7.2.4 Relevance Score
The pediatrician found the relevance score was effective at filtering
less relevant phenotypes, but noted there were several errors. Further
investigation revealed these occurred due to biases present in the
expected phenotype probability. As the expected probability derived
from the HPO is biased toward rare genetic diseases, the annotations
have a higher prevalence of neurological and developmental abnormal-
ities, (e.g., developmental delay, intellectual disability, seizures). As
these abnormalities are overrepresented in the expected probability,
the associated modeled phenotypes received lower relevance scores.
These abnormalities are highly relevant to ASD and uncommon in
most non-genetic conditions. That said, she noted that automatically
quantifying the relevance of a phenotype is highly desirable, since it
can help identify meaningful phenotypes regardless of their modeled
probability. Thus our approach is promising, but requires a curated
expected probability to avoid misleading interpretations.

8 DISCUSSION AND LIMITATIONS

We addressed the top three levels of the Nested Model for Design and
Validation [40]. The visual encodings were justified using collaborative
design, and validated, along with the data abstraction, via evaluations
with machine learning experts. The problem domain characterization
was validated through observation of a disease subtype characterization
session involving a machine learning researcher and a medical expert.

Phenotype hierarchies. The machine learning researchers unani-
mously lauded the representation of phenotypes within the hierarchical
taxonomy of the HPO. The aggregation of phenotype probabilities
helped identify the dominant biological systems in each topic and acted
as a starting point for deeper investigation. Although the pediatrician
reported some of the HPO terminology was unfamiliar (when compared
with ICD terms), the radial hierarchy enabled discussions about
biological systems that are not available as CUI codes. The hierarchical
representation also promoted investigations of specific phenotype
divergences between topics with similar dominant biological systems,
which was not possible with previous analysis approaches.

Temporal evolution of phenotype probabilities. The timeline
charts were used extensively by both the machine learning experts and
the medical expert to investigate the evolution of specific phenotype
probabilities. Timeline charts were used most frequently to confirm
patterns observed in the radial hierarchies, and explore the implications
by comparing the timeline charts of a specific phenotype across the
topics. This division of hierarchical and temporal perspectives aligned
well with the workflow of experts in both domains.

Temporal summary measures. The machine learning experts
reported the maximum probability and relevance score percentiles
aligned with the goals of identifying dominant phenotypes in each
topic and intuiting about their relevance to the disease. The trend
slope and representative age interval provided meaningful information
when investigations focused on biological systems where probabilities
were aggregated. However, when investigating specific phenotypes, the
modeled probabilities were often isolated to shorter time intervals, so
the trend slope over the entire age interval did not summarize these
distributions well. In response, we introduced an additional option to
calculate the trend slope for only the representative age interval. There
would be value in further efforts to develop a metric that accurately
identifies the time interval of the largest probability mass.

Facilitating comparisons. The visualizations supported a variety
of comparisons of the topics: hierarchical relationships within topics,
temporal progression across topics, and correlations between summary
measures. The ability to highlight and select phenotypes in any view
was greatly appreciated, as it enabled for the isolation of specific terms
to compare and provided a means of ad hoc A/B comparisons between
phenotypes. An additional feature that was requested was the ability to
hide phenotypes that are known to be less relevant.

Expected Phenotype Probability. We identified shortcomings
of the relevance score due to the expected probability based on
the HPO. Developing expected probability is challenging, because
finding a representative dataset to model is difficult [30]. Patients
who frequently visit hospitals have more data entered, leading to

an over-representation of individuals with pre-existing conditions.
Hospitals also have different specializations and tend to see patients
with associated conditions. Data from an institution may thus also
have a bias toward patients with certain types of conditions (e.g.,
gastrointestinal), which could lead to an over-representation of these
phenotypes. In any case, the approach of calculating a relevance score
based on an expected probability is promising, with the caveat that
expected probabilities must be carefully curated and validated to ensure
that they do not mislead the investigators. This is interesting and highly
important future work to make it easier for medical experts to reason
about the complex output of topic models.

Coupling to clinical data. The pediatrician suggested PhenoLines
could provide a starting point for clinical investigations, based on
topics that characterize interesting disease processes or patient cohorts.
Providing a tighter coupling to the underlying EHR data could extend
the clinical utility of PhenoLines. The phenotype terminology used in
the HPO is less familiar to medical experts than ICD code descriptions,
so integrating term mappings between other medical terminologies
could improve the interpretability of the visualizations.

9 CONCLUSION AND FUTURE WORK

This work introduced PhenoLines, an interactive visual analysis tool
to support the interpretation of disease subtypes via topic models to
facilitate model characterization and optimization. We described a
data transformation workflow to produce a flexible graph-based data
abstraction that can be converted into a variety of visual representations
that provide complementary perspectives on topics and the phenotypes
they model. We demonstrated the benefits of both hierarchical and
temporal representations for the analysis of disease subtypes. Results
of initial evaluations suggest that PhenoLines aids interpretation of
the quality of topic models by machine learning researchers, and also
enables fluid collaborative inspection of topic models with medical
experts. Improving our understanding of how phenotypes manifest and
evolve over time for a particular disease can help differentiate disease
subtypes, improving diagnosis and prognosis, and enabling for more
effective personalized care to address the individual needs of patients.

Feedback suggested that PhenoLines could act as a gateway to the
underlying EHR data. For example, topics identified as characterizing
cases of misdiagnosis could be used to extract patient cohorts for further
clinical investigation. Extending the clinical utility of PhenoLines is an
interesting direction for future research.

While the relevance score is a promising approach to simplify
the hierarchical topology through filtering and compression, further
research is necessary to develop and validate representative expected
phenotype probabilities to improve automatic relevance computation.

In our evaluations, the topic models were limited to seven topics,
but future work could address interactive adjustment of the number of
topics. Methods that automatically derive the optimal number of topics
may be applicable (e.g., Hierarchical Dirichlet Process [51]).

Although our work investigated disease characterization via topic
models, the data transformation workflow is general and could be
applied to other ontologies, and for data with or without a temporal
component. Just as the ontology-based data abstraction provided com-
mon ground for discussions between machine learning researchers and
medical experts, such abstractions could help bridge the knowledge-gap
between collaborating visualization researchers and domain experts. A
graph-based abstraction is familiar in the visualization domain, while
the terminology aligns to the mental models of domain experts. As
we demonstrated, the graph-based data abstraction can be flexibly
transformed into a variety of visual representations. Further, our
approach to topology simplification could be adapted to general graphs
or trees when expected measures of data are available.
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